+++ Update 11/2024: FutureWorkGBG: Project themes in GBG for students (PDF or DOCX) +++
Games are an interesting field in computer science concerning the question whether a computer can learn the game strategies just from self-play, without explicitly programming the tactics or performing exhaustive search. This is a branch of artificial intelligence (AI).
In January'2018 we released GBG, the General Board Game playing and learning framework to the research community as another open-source project.
https://github.com/WolfgangKonen/GBG
GBG takes the abstraction one level higher (than in the previous Connect-4 project) in that it provides a software framework with standardized interfaces for arbitrary games and arbitrary AI agents. GBG helps students and researchers to take a quicker start-off into the area of game learning. Read more about GBG in the publications below.
Currently, the games implemented in GBG include 2048, Hex, Othello, Sim, Nim, Tic-Tac-Toe; more games are planned for the future. Current agents in GBG include MCTS, Max-N, Expectimax-N, TD-n-tuple and others.
The long-term goal of our research group is it to transfer these learning strategies to many other games (dots-and-boxes, go, Poker, checkers, Abalone, ...). The project is related to the research field known as General Game Playing (GGP). The aim of GGP and GBG is it to develop agents which are able to learn a great variety of games.
Read more about Games & Learning ...
FutureWorkGBG: Project themes in GBG for students (PDF)
Contributors
Wolfgang Konen, Markus Thill, Samineh Bagheri, Johannes Kutsch, Kevin Galitzki, Felix Barsnick, Yannick Dittmar, Julian Cöln, Johannes Scheiermann
Publications GBG
The article General Board Game Playing for Education and Research in Generic AI Game Learning (2019) provides a scientific overview on GBG. The technical report The GBG Class Interface Tutorial V2.3: General Board Game Playing and Learning (Sep 2022) gives an introduction to GBG more from the programmer's perspective.
2023
Konen, Wolfgang
Towards Learning Rubik's Cube with N-tuple-based Reinforcement Learning Artikel
In: arXiv preprint arXiv:2301.12167, 2023.
@article{Konen2023,
title = {Towards Learning Rubik's Cube with N-tuple-based Reinforcement Learning},
author = {Wolfgang Konen},
url = {https://arxiv.org/abs/2301.12167},
year = {2023},
date = {2023-01-01},
urldate = {2023-01-01},
journal = {arXiv preprint arXiv:2301.12167},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Seven, Meltem
KI-Agenten im Vergleich: Erfolg von Agenten des Ludii General Game Systems in Partien gegen perfekte oder starke Agenten am Beispiel der Spiele Vier Gewinnt, Nim und Othello Abschlussarbeit
TH Köln – University of Applied Sciences, 2023, (Bachelor thesis).
@mastersthesis{Seven2023,
title = {KI-Agenten im Vergleich: Erfolg von Agenten des Ludii General Game Systems in Partien gegen perfekte oder starke Agenten am Beispiel der Spiele Vier Gewinnt, Nim und Othello},
author = {Meltem Seven},
url = {https://www.gm.fh-koeln.de/~konen/research/PaperPDF/BA_Meltem-Seven-final.pdf},
year = {2023},
date = {2023-01-01},
school = {TH Köln – University of Applied Sciences},
note = {Bachelor thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
2022
Konen, Wolfgang
The GBG Class Interface Tutorial V2.3: General Board Game Playing and Learning Forschungsbericht
TH Köln 2022.
@techreport{Konen2022,
title = {The GBG Class Interface Tutorial V2.3: General Board Game Playing and Learning},
author = {Wolfgang Konen},
url = {https://www.gm.fh-koeln.de/ciopwebpub/Konen22a.d/TR-GBG.pdf},
year = {2022},
date = {2022-09-01},
institution = {TH Köln},
school = {Research Center CIOP (Computational Intelligence, Optimization and Data Mining)},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
Cöln, Julian
KI-Konzepte für das Erlernen nicht-deterministischer Spiele am Beispiel von "EinStein würfelt nicht!" Abschlussarbeit
TH Köln – University of Applied Sciences, 2022, (Bachelor thesis).
@mastersthesis{Coeln2022,
title = {KI-Konzepte für das Erlernen nicht-deterministischer Spiele am Beispiel von "EinStein würfelt nicht!"},
author = {Julian Cöln},
url = {https://www.gm.fh-koeln.de/~konen/research/PaperPDF/BA_Julian_Coeln2021-final.pdf},
year = {2022},
date = {2022-02-01},
school = {TH Köln – University of Applied Sciences},
note = {Bachelor thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
Scheiermann, Johannes; Konen, Wolfgang
AlphaZero-Inspired Game Learning: Faster Training by Using MCTS Only at Test Time Artikel
In: arXiv preprint arXiv:2204.13307, 2022, (Preprint of the IEEE ToG 2022 paper).
@article{Scheier2022arXiv,
title = {AlphaZero-Inspired Game Learning: Faster Training by Using MCTS Only at Test Time},
author = {Johannes Scheiermann and Wolfgang Konen},
url = {https://arxiv.org/abs/2204.13307},
year = {2022},
date = {2022-01-01},
journal = {arXiv preprint arXiv:2204.13307},
note = {Preprint of the IEEE ToG 2022 paper},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
Scheiermann, Johannes; Konen, Wolfgang
AlphaZero-Inspired Game Learning: Faster Training by Using MCTS Only at Test Time Artikel
In: IEEE Transactions on Games, 2022.
@article{Scheier2022,
title = {AlphaZero-Inspired Game Learning: Faster Training by Using MCTS Only at Test Time},
author = {Johannes Scheiermann and Wolfgang Konen},
url = {https://ieeexplore.ieee.org/document/9893320},
doi = {10.1109/TG.2022.3206733},
year = {2022},
date = {2022-01-01},
urldate = {2022-01-01},
journal = {IEEE Transactions on Games},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2021
Meissner, Simon
Untersuchung des Spiel- und Lernerfolgs künstlicher Intelligenzen für ein nichtdeterministisches Spiel mit imperfekten Informationen: Blackjack in der Game-Learning-Umgebung ’General Board Game’ (GBG) Abschlussarbeit
TH Köln – University of Applied Sciences, 2021, (Bachelor thesis).
@mastersthesis{Meissner2021,
title = {Untersuchung des Spiel- und Lernerfolgs künstlicher Intelligenzen für ein nichtdeterministisches Spiel mit imperfekten Informationen: Blackjack in der Game-Learning-Umgebung ’General Board Game’ (GBG)},
author = {Simon Meissner},
url = {https://www.gm.fh-koeln.de/~konen/research/PaperPDF/BA-Meissner-final-2021.pdf},
year = {2021},
date = {2021-12-01},
school = {TH Köln – University of Applied Sciences},
note = {Bachelor thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
Zeh, Tim
Untersuchung von allgemeinen KI-Agenten für das Spiel Poker im General Board Games Framework Abschlussarbeit
TH Köln – University of Applied Sciences, 2021, (Master thesis).
@mastersthesis{Zeh2021,
title = {Untersuchung von allgemeinen KI-Agenten für das Spiel Poker im General Board Games Framework},
author = {Tim Zeh},
url = {https://www.gm.fh-koeln.de/~konen/research/PaperPDF/MA_Zeh_final_Poker-GBG-2021.pdf},
year = {2021},
date = {2021-07-01},
school = {TH Köln – University of Applied Sciences},
note = {Master thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
Konen, Wolfgang; Bagheri, Samineh
Final adaptation reinforcement learning for N-player games Artikel
In: arXiv preprint arXiv:2111.14375, 2021.
@article{Konen2021,
title = {Final adaptation reinforcement learning for N-player games},
author = {Wolfgang Konen and Samineh Bagheri},
url = {https://arxiv.org/abs/2111.14375},
year = {2021},
date = {2021-01-01},
journal = {arXiv preprint arXiv:2111.14375},
keywords = {},
pubstate = {published},
tppubtype = {article}
}
2020
Scheiermann, Johannes
Sind (trainierte) General-Purpose-RL-Agenten im Brettspiel Othello stärker als (untrainierte) General-Game-Playing Agenten? Forschungsbericht
TH Köln, Institut für Informatik 2020, (Praxisprojekt).
@techreport{Scheier2020,
title = {Sind (trainierte) General-Purpose-RL-Agenten im Brettspiel Othello stärker als (untrainierte) General-Game-Playing Agenten?},
author = {Johannes Scheiermann},
url = {http://www.gm.fh-koeln.de/~konen/research/PaperPDF/INF-Prj-Scheiermann-2020-08.pdf},
year = {2020},
date = {2020-01-01},
institution = {TH Köln, Institut für Informatik},
note = {Praxisprojekt},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
Scheiermann, Johannes
AlphaZero-inspirierte KI-Agenten im General Board Game Playing Abschlussarbeit
TH Köln -- University of Applied Sciences, 2020, (Bachelor thesis).
@mastersthesis{Scheier2020b,
title = {AlphaZero-inspirierte KI-Agenten im General Board Game Playing},
author = {Johannes Scheiermann},
url = {http://www.gm.fh-koeln.de/~konen/research/PaperPDF/BA_Scheiermann_final.pdf},
year = {2020},
date = {2020-01-01},
school = {TH Köln -- University of Applied Sciences},
note = {Bachelor thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
Konen, Wolfgang; Bagheri, Samineh
Reinforcement Learning for N-Player Games: The Importance of Final Adaptation Proceedings Article
In: Vasile, Bogdan Filipic Massimiliano (Hrsg.): 9th International Conference on Bioinspired Optimisation Methods and Their Applications (BIOMA), Bruxelles, 2020.
@inproceedings{Konen20bc,
title = {Reinforcement Learning for N-Player Games: The Importance of Final Adaptation},
author = {Wolfgang Konen and Samineh Bagheri},
editor = {Bogdan Filipic Massimiliano Vasile},
url = {http://www.gm.fh-koeln.de/ciopwebpub/Konen20b.d/bioma20-TDNTuple.pdf},
year = {2020},
date = {2020-01-01},
booktitle = {9th International Conference on Bioinspired Optimisation Methods and Their Applications (BIOMA)},
address = {Bruxelles},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Konen, Wolfgang; Bagheri, Samineh
Final Adaptation Reinforcement Learning for N-Player Games Forschungsbericht
Research Center CIOP (Computational Intelligence, Optimization and Data Mining) 2020.
@techreport{Konen20b_TRb,
title = {Final Adaptation Reinforcement Learning for N-Player Games},
author = {Wolfgang Konen and Samineh Bagheri},
url = {http://www.gm.fh-koeln.de/ciopwebpub/Konen20b_TR.d/Konen20b_TR.pdf},
year = {2020},
date = {2020-01-01},
institution = {Research Center CIOP (Computational Intelligence, Optimization and Data Mining)},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
Konen, Wolfgang
The GBG Class Interface Tutorial V2.2: General Board Game Playing and Learning Forschungsbericht
Research Center CIOP (Computational Intelligence, Optimization and Data Mining) 2020.
@techreport{Konen20d,
title = {The GBG Class Interface Tutorial V2.2: General Board Game Playing and Learning},
author = {Wolfgang Konen},
url = {http://www.gm.fh-koeln.de/ciopwebpub/Konen20d.d/TR-GBG.pdf},
year = {2020},
date = {2020-01-01},
institution = {Research Center CIOP (Computational Intelligence, Optimization and Data Mining)},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
2019
Cöln, Julian; Dittmar, Yannick
Untersuchung von KI Agenten im Spiel Othello Forschungsbericht
TH Köln, Institut für Informatik 2019.
@techreport{Cöln2019,
title = {Untersuchung von KI Agenten im Spiel Othello},
author = {Julian Cöln and Yannick Dittmar},
url = {http://www.gm.fh-koeln.de/~konen/research/PaperPDF/INF-Proj-DittmarCoeln-2019-12.pdf},
year = {2019},
date = {2019-12-01},
institution = {TH Köln, Institut für Informatik},
keywords = {},
pubstate = {published},
tppubtype = {techreport}
}
Konen, Wolfgang
General Board Game Playing for Education and Research in Generic AI Game Learning Proceedings Article
In: Perez, Diego; Mostaghim, Sanaz; Lucas, Simon (Hrsg.): IEEE Conference on Games, London, 2019.
@inproceedings{Konen19b,
title = {General Board Game Playing for Education and Research in Generic AI Game Learning},
author = {Wolfgang Konen},
editor = {Diego Perez and Sanaz Mostaghim and Simon Lucas},
url = {https://arxiv.org/pdf/1907.06508},
year = {2019},
date = {2019-08-20},
booktitle = {IEEE Conference on Games},
address = {London},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}
Barsnick, Felix
Implementierung und Untersuchung eines Turniersystems für KI-Agenten in Brettspielen Abschlussarbeit
TH Köln -- University of Applied Sciences, 2019, (Master thesis).
@mastersthesis{Barsnick2019,
title = {Implementierung und Untersuchung eines Turniersystems für KI-Agenten in Brettspielen},
author = {Felix Barsnick},
url = {http://www.gm.fh-koeln.de/~konen/research/PaperPDF/MA_MMI_Barsnick-2019-04-final.pdf},
year = {2019},
date = {2019-01-01},
institution = {Institut für Informatik},
school = {TH Köln -- University of Applied Sciences},
note = {Master thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
2017
Galitzki, Kevin
Selbstlernende Agenten für das skalierbare Spiel Hex: Untersuchung verschiedener KI-Verfahren im GBG-Framework Abschlussarbeit
TH Köln -- University of Applied Sciences, 2017, (Bachelor thesis).
@mastersthesis{Galitzki2017,
title = {Selbstlernende Agenten für das skalierbare Spiel Hex: Untersuchung verschiedener KI-Verfahren im GBG-Framework},
author = {Kevin Galitzki},
url = {http://www.gm.fh-koeln.de/~konen/research/PaperPDF/BA-KevinGalitzki-final-2017.pdf},
year = {2017},
date = {2017-01-01},
institution = {Institut für Informatik},
school = {TH Köln -- University of Applied Sciences},
note = {Bachelor thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
Kutsch, Johannes
KI-Agenten fur das Spiel 2048: Untersuchung von Lernalgorithmen für nichtdeterministische Spiele Abschlussarbeit
TH Köln -- University of Applied Sciences, 2017, (Bachelor thesis).
@mastersthesis{Kutsch2017,
title = {KI-Agenten fur das Spiel 2048: Untersuchung von Lernalgorithmen für nichtdeterministische Spiele},
author = {Johannes Kutsch},
url = {http://www.gm.fh-koeln.de/~konen/research/PaperPDF/BA_JohannesKutsch_Final-2017.pdf},
year = {2017},
date = {2017-01-01},
institution = {Institut für Informatik},
school = {TH Köln -- University of Applied Sciences},
note = {Bachelor thesis},
keywords = {},
pubstate = {published},
tppubtype = {mastersthesis}
}
2012
Thill, Markus; Koch, Patrick; Konen, Wolfgang
Reinforcement learning with n-tuples on the game Connect-4 Proceedings Article
In: Coello, Carlos A. Coello; Cutello, Vincenzo (Hrsg.): PPSN'2012: 12th International Conference on Parallel Problem Solving From Nature, Taormina, S. 184–194, Springer, Heidelberg, 2012.
@inproceedings{Thil12b,
title = {Reinforcement learning with n-tuples on the game Connect-4},
author = {Markus Thill and Patrick Koch and Wolfgang Konen},
editor = {Carlos A. Coello Coello and Vincenzo Cutello},
url = {http://maanvs03.gm.fh-koeln.de/webpub/CIOPReports.d/Thi12.d/Thil12.pdf},
year = {2012},
date = {2012-01-01},
urldate = {2012-01-01},
booktitle = {PPSN'2012: 12th International Conference on Parallel Problem Solving From Nature, Taormina},
pages = {184--194},
publisher = {Springer},
address = {Heidelberg},
keywords = {},
pubstate = {published},
tppubtype = {inproceedings}
}