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Abstract—Systems that learn to play board games are often
trained by self-play on the basis of temporal difference (TD)
learning. Successful examples include Tesauro’s well known TD-
Gammon and Lucas’ Othello agent. For other board games of
moderate complexity like Connect Four, we found in previous
work that a successful system requires a very rich initial feature
set with more than half a million of weights and several millions
of training games. In this work we study the benefits of eligibility
traces added to this system. To the best of our knowledge,
eligibility traces have not been used before for such a large system.
Different versions of eligibility traces (standard, resetting, and
replacing traces) are compared. We show that eligibility traces
speed up the learning by a factor of two and that they increase
the asymptotic playing strength.

I. INTRODUCTION

Games are an ideal testbed for complex learning tasks.
They can be repeated numerous times in a controlled game
environment. The task of the learning agent is to collect the
necessary information from multiple games to form a good
strategy. The problem in board games is that the reward is
usually only given at the end of the game and it is often
difficult to assign a credit to each action (move), when the final
reward lies in the future (credit-assignment problem). One way
to assess this problem is temporal difference learning (TDL),
a special form of reinforcement learning.

We studied in our previous work [1], [2] the game Connect
Four (Connect-4, Sec. I-B) as an example. We showed that a
combination of TDL with a specific feature set (the so-called
n-tuple system, Sec. II-A) can successfully learn that game.
A key to success is a rather big feature space resulting in a
system with several millions of weights. Not surprisingly, our
first solution had the drawback that the training of the agent
requested a huge number (several millions) of training games
as well. The final success rate was with 90% quite high, but
there is still room for improvement with respect to the missing
10%.

In this paper we investigate new strategies for speeding up
the learning and strengthening the final success rate. These
strategies are:

A) Eligibility traces: This is a well-known strategy in TDL
which, in the case of sparse input vectors, allows more
weights to participate in learning during a specific episode.
Eligibility traces propagate rewards back to earlier visited
states, diminished by a discount factor for each step back.
In our previous work we were quite reluctant to use eli-
gibility traces because a naı̈ve implementation would add
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Fig. 1. Typical Connect-4 position, created during a match of a temporal
difference learning agent (Yellow) against a perfect playing Minimax agent
(Red). Minimax is under zugzwang and will loose the game, however, the
defeat could be delayed as far as possible. Additionally, this figure shows an
example 4-tuple state and its mirrored equivalent (Sec. II-A).

several million trace parameters to the system (correspond-
ing to the number of weights). We present in this work a
more efficient implementation circumventing this problem.
Several variants of eligibility traces are compared.

B) Larger n-tuple systems: If an efficient implementation is
available, it is natural to ask whether a larger feature space
would increase either learning speed, final accuracy, or
both.

A. Related Work

Temporal Difference Learning (TDL) was successfully ap-
plied for playing checkers by Samuel [3] and became popular
with the Backgammon agent proposed by Tesauro [4], [5].
There have been various follow-ups of Tesauro’s TD-Gammon
for other games, e.g., TicTacToe [6], Go [7] and Connect-4 [8],
but mostly with discouraging results. Recent work in this field
mainly includes extensions of the original TDL algorithm, such
as Coevolutionary TDL [9], [10] or n-tuple systems [11]. Also
van Seijen and Sutton [12] proposed a new online version of
TD(λ) which outperformed the classical TD(λ) algorithm on
two small tasks. Runarsson and Lucas [13] study preference
learning in games as an interesting alternative to TDL.

Thill et al. [1] established a TDL agent for the game
Connect-4 solely trained by self-play. Although Connect-4 is



solvable by computer programs [14], [15], the game remains
difficult to learn with self-playing agents. For this reason
most trained players for Connect-4, e.g., Schneider et al. [16],
Curran and O’Riordan [17], and Stenmark [18], do not use
perfect-playing agents as opponents.

A pre-calculated Minimax agent that finds the perfect next
move can help to give better insights into the real playing
strength of TDL agents for Connect-4. With Minimax as
opponent, Thill et al. [1] could reliably measure the agents’
strength and established that the time-to-learn (80% success
rate, Sec. III-B) was 1.5 million games. Based on the work
of [1], Bagheri et al. [2] improved the time-to-learn by a factor
of 3 to 0.5 million games. This was achieved by adapting the
learning rates of the algorithm using methods like Temporal
Coherence Learning [19] or Incremental Delta-Bar Delta [20].

However, in all of the algorithms above, the rewards
are only propagated one step back to earlier states in each
episode. This can result in slow learning and high computing
times. A possible solution to this problem are eligibility traces
introduced in the TD(λ) algorithm [21] and further developed
by Singh and Sutton [22]. TD(λ) combined with self-play has
been successfully proposed for the card game hearts [23],
Go [24], give-away checkers [25], and Backgammon [26].
To the best of our knowledge, no results have been reported
for the game Connect-4, although Stenmark briefly describes
eligibility traces in [18].

Larger systems with eligibility traces are not found very
often in the literature. An remarkable exception is the work
of Geramifard et al. [27] extending a special TD algorithm
(iLSTD) with eligibility traces for a system with n=10 000
traces. To the best of our knowledge, no results were reported
so far for systems with more than a million of traces, as they
occur in our task here.

B. Connect-4

Connect-4 is a popular board game for two players (typi-
cally Yellow and Red) played on a board with seven columns
and six rows. One main characteristic of the game is the
vertical arrangement of the board: Starting with Yellow, both
players in turn drop one of their pieces into one of the seven
columns (slots). Due to the gravity-rule, the pieces then fall
down to the lowest free position of the respective slot. A slot
containing six pieces is considered as full and reduces the
number of possible moves for both players by one (initially,
seven moves are possible). The goal of both opponents is to
create a line of four pieces with their color, either horizontally,
vertically or, diagonally. The player who can achieve this first,
wins the game. After 42 plys1, all columns will be completely
filled and the match ends with a tie, if none of the opponents
was able to create a line of four own pieces.
Connect-4 has a state space complexity of around 4.5·1012 dif-
ferent positions [28]; solving the game is still a non-trivial task:
typically sophisticated tree-based algorithms are necessary in
order to solve Connect-4 within a few days. Nevertheless, a
solution was found independently by Allen [15] and Allis [14]
in 1988. Their work proved that – assuming perfect play of
both opponents – the starting player (Yellow) can always win
by placing her first piece in the center slot. Red on the other

1A ply is a single move of one player, Yellow or Red.

hand, can delay her defeat as far as possible and force Yellow
to use all her pieces. An example position is shown in Fig. 1
where Red will loose after 2 plys.

II. METHODS

A. N-tuple Systems

Even though n-tuple systems were already introduced by
Bledsoe and Browning in 1959 for character recognition pur-
poses [29], their application to board games is rather new.
Recently, Lucas [11] introduced an n-tuple architecture that can
be used for approximating position value functions in board
games like Othello.2

An n-tuple is defined as a sequence of length n of so-
called sampling points Tν = (τν0, τν1, . . . , τνn−1), addressing
a subset of all possible board cells. Connect-4 consists of
7 × 6 = 42 cells in total, so we code the cells with τνj ∈
{0, . . . , 41}. N-tuple systems can be viewed as a set of n-tuples
and corresponding look-up tables, that form a linear position
value function V (st). Depending on the current occupation of
cell τνj and the cell beneath, its current state can assume a
value st[τνj ] ∈ {0, . . . , P − 1}. We distinguish P = 4 states:

0 = empty and not reachable, 1 = Yellow,
2 = Red, 3 = empty and reachable.

By reachable we mean an empty cell that can be occupied
in the next move. The reason behind this is that it makes a
difference whether e. g. three yellow pieces in a row have a
reachable empty cell adjacent to them (a direct threat for Red)
or a non-reachable cell (indirect threat) [1].
With P = 4 possible values per sampling point, every n-tuple
(of length n) can have Pn different states. Each n-tuple state
is mapped to an unique index value kν ∈ {0, . . . , Pn−1} with

i = kν =

n−1∑
j=0

st[τνj ]P
j . (1)

For every n-tuple state, the generated index can be used to
address a weight wi,ν,t in a look-up table LUTν associated
with n-tuple Tv . We maintain two look-up tables per n-tuple,
one for each player. Generally speaking, the individual LUTs
can be considered as parameter vectors ~wv,t that will be
adjusted in every time step t during the training.

One improvement when using n-tuple systems is the uti-
lization of board symmetries, which are very common in many
board games. In Connect-4, the mirroring of the board along
the central column leads again to an equivalent position. With
this in mind, we can calculate an additional index value kν of
the mirrored Connect-4 board. The individual weights of ~wv,t
are then activated according to a state-dependent input vector
~xν(st), generated as follows:

xi,ν(st) =

{
1, if i ∈

{
kν , kν

}
0, otherwise

. (2)

Fig. 1 shows an example board position with a 4-tuple and
its mirrored equivalent. Assuming that we follow the n-tuple

2This n-tuple approach works in a way similar to the kernel trick used in
support vector machines (SVM): The low dimensional board is projected into
a high-dimensional feature space by the n-tuple indexing process [11].



on the left hand side from its lowest sampling point to its
highest, the corresponding index values are calculated as k =
1 · 40 + 2 · 41 + 1 · 42 + 1 · 43 = 89. Likewise, the mirrored
n-tuple has k = 147.

For a given board position at time step t, the output for each
n-tuple is generated by calculating the dot product ~wν,t ·~xν(st).
Since we typically have a system of m n-tuples Tν with ν =
1, . . . ,m, the overall output of the n-tuple network can be
formulated as a linear function

f
(
~wt, ~x(st)

)
=

m∑
ν=1

Pn−1∑
i=0

wi,ν,t · xi,ν(st) (3)

where ~wν,t and ~xν(st) are considered here as sub-vectors,
contained in two big vectors ~wt and ~x(st), respectively. All
weights in ~wt are updated according to the TDL update rule
(Sec. II-B).

Our standard n-tuple system consists of 2 × 70 × 8-
tuples 3 and it has 9 175 000 adressable weights. Due to many
non-realizable n-tuple states,4 the number of weights that get
activated during training is substantially lower. Our standard
n-tuple system has only about 7% realizable states, i. e. only
600 000−700 000 of all addressable weights are ever activated
during training.5 Note that the input vector ~x(st) for a given
board position is even more sparse: Each of the 70 n-tuples
has only 2 states activated, thus only 0.02% (≈ 2 ·70/650 000)
of all realizable states will carry a 1.

B. Temporal Difference Learning

The goal of almost all game-playing agents is to learn to
predict the ideal value function. Ideally, at a given time step
t, a state value function V (st) should indicate how desirable
a state st ∈ S is for the agent, where S is the set of all states.
Typically, the value function maps a state to a real value.
Temporal Difference Learning (TDL) can be one approach for
learning such a value function, by viewing the game as a re-
inforcement learning (RL) problem: An initially inexperienced
agent plays a sequence of games against itself. When the game
terminates in a final state R(sf ), the environment returns a
reward R(sf ) ∈ {−1.0, 0.0, 1.0} for {Red-win, Draw, Yellow-
win}. Because rewards are only given in terminal states, the
purpose of V (st) is to estimate the expected future reward for
all other states. We choose this function to have the form

V (st) = y(~wt, ~x(st)) = σ
(
f
(
~wt, ~x(st)

))
(4)

with σ = tanh, the parameter vector ~wt (containing adjustable
weights), a state-dependent input vector ~x and a function f .
In our case, f is given by Eq. (3) (simply the dot product of
~wt and ~x).
TDL attempts to learn the parameter vector ~wt by minimizing
the mean-squared approximation error (weighted proportional
to state frequency). As the ideal value function is unknown,
TDL approximates the error of a state at a given time step
t with a bootstrapping approach, by selecting the best suc-
cessor move st+1 and simply calculating temporal differences

3good compromise between computation time and accuracy
4Non-realizable states occur for n-tuples with one cell beneath the other:

The upper cell cannot be in state 1,2, or 3 if the lower cell is in state 0 or 3.
5The same ratio holds for bigger n-tuple systems: An n-tuple system with

2× 150× 8-tuples has about 1 300 000− 1 500 000 active weights.

according to [21]:

δt = R(st+1) + γV (st+1)− V (st), (5)

where R(st+1) is the reward for the successor move and V (st)
is the current approximation of the value function.6 Usually
δt is referred to as the temporal difference (TD) error signal,
which is used to train the weight vector ~wt according to the
following update rule:

wi,t+1 = wi,t + αδt∇wi V (st) (6)
= wi,t + α

(
1− V 2(st)

)
δtxi.

This weight update aims at moving the current prediction
closer to the prediction of the successor state. The complete
TDL algorithm is summarized in Algorithm 1. Further details
on TDL in strategic board games can be found in [30].

C. TD(λ) and Eligibility Traces

Most board games such as Connect-4 have in common, that
rewards – given by the environment – are delayed. Generally,
a whole sequence of actions is necessary to reach a state in
which the final reward is given. As mentioned before, temporal
difference methods can be useful for solving reinforcement
learning problems with such delayed rewards. However, even
though simple (one-step) TD methods are able to learn value
functions that predict the expected future reward, they still have
to deal with some delay in the updates of their value functions:
TD methods estimate in a bootstrapping process the temporal
difference error for a state st based on the current prediction of
the successive state rather than on the final outcome (reward).
This means that a reward given at the end of a sequence of
actions is only used to adjust the last prediction of the episode
and predictions before the last one will not be updated. Thus,
one-step TD methods can result in a slow learning process.
As a simple example, assume that an agent constantly follows
a policy π. This policy may result in an episode with T
time steps and a final reward rT . After completing the first
episode, the agent receives a reward from the environment and
updates the value for V (sT−1). During the second episode, the
value V (sT−2) can be adjusted and so forth. In this example,
T − 1 repeated episodes would be required, until a delayed
reward finally affects V (s0). In the case of large T , this can
be problematic and can result in a slow convergence of the
learning process. But if the agent constantly follows his policy
π anyhow, then the predicted values of all states can directly be
set to the final reward, i. e. V (s0) = V (s1) = · · · = V (sT ) =
rT .
In order to use training samples more efficiently, it is thus
convenient to assign some credit to the preceding states
{st−1, st−2, . . .} as well, when updating the value function
for the current state st, since these preceding states led to the
agent’s current situation.
Monte Carlo methods follow this general idea, by approach-
ing the backups in a rather different way than simple TD
methods [31]: Instead of updating the value function based on
temporal differences of predictions, Monte Carlo algorithms
first complete a whole episode of length T and then update
the value of each state visited during this specific episode.
In contrast to TD methods, the backups for st are not based
on any predictions, only the final reward rT provided by the

6V (st+1) is set to 0 for a final state st+1.



Fig. 2. Schematic view of different eligibility trace variants: Line a shows
the situation without elig. traces, a weight is activated only at isolated time
points. The dotted vertical line represents a random move. Line b shows the
eligibility trace with reset on random move. Line c shows replacing traces,
this time without reset on random move.

environment is used: the values for all visited states of the
corresponding episode are updated to that rT . However, one
main disadvantage of Monte Carlo algorithms is, that the actual
learning step cannot be performed until the final outcome of
the episode is known.

The TD(λ) algorithm, introduced by Sutton [21], synthe-
sizes the plain TD method with the Monte Carlo method
by combining the advantages of both approaches. The new
ingredient in TD(λ) is the so called eligibility trace vector,
containing a decaying trace ~et = (ei,t)

T for each weight
wi [21]:

~et =

t∑
k=0

(λγ)t−k∇~w V (sk)

= λγ~et−1 +∇~w V (st),

~e0 = ∇~w V (s0),

(7)

with a trace decay parameter λ and a discount factor γ
(we assume γ = 1 throughout this paper), which decay (or
discount) the individual traces ei by the factor λγ in every time
step. Thus, the effect of future events on the corresponding
weights wi exponentially decreases over time. By choosing λ
in a range of 0 ≤ λ ≤ 1, it is possible to shift seamlessly
between the class of simple one-step TD methods (λ = 0) and
Monte Carlo methods (λ = 1) [31].

Replacing traces: The definition of the conventional eli-
gibility traces in Eq. (7) implies, that each trace accumulates
a value ∆ei = ∇wi

V (st) in every time step t if the corre-
sponding weight is activated. In certain cases, this behavior
may be undesirable, since specific states can be visited many
times during one episode. As a result, the according traces
build up to comparatively large values and future TD errors
give higher credit to frequently visited states, which could
negatively affect the overall learning process. Although a board
state in Connect-4 is not revisited during an episode, a certain
feature state (as it is introduced for example with the n-tuple
states of Sec. II-A) might be active in many time steps of an
episode. Thus, certain traces are addressed repeatedly.
Replacing eligibility traces as proposed by Singh & Sutton [32]
depict an approach to overcome this potential problem related
to conventional eligibility traces. The main idea behind replac-
ing traces is to replace a trace with ei = ∇wi

V (st) each time

Algorithm 1 Incremental TD(λ) algorithm for board games
based on [30]. Prior to the first game, the weight vector ~w is
initialized with random values. Then the following algorithm
is executed for each complete board game. During self-play,
the player p switches between +1 (Yellow) and −1 (Red). In
our experiments we use γ = 1 throughout.

Set REP = true, if using replacing traces
Set RES = true, if resetting elig. traces on random moves
Set the initial state s0 (usually the empty board) and p = 1
Use partially trained weights ~w from previous games
function TDLTRAIN(s0, ~w)

~e0 ← ∇~w y(~w, ~x(s0)) . Initial eligibility traces
for

(
t← 0 ; st /∈ SFinal ; t← t+ 1, p← (−p)

)
do

Vold ← y(~wt, ~x(st)) . Value for st
generate randomly q ∈ [0, 1]
if (q < ε) then

Randomly select st+1 . Explorative move
if (RES) then

~et ← 0
end if

else . Greedy move
Select after-state st+1, which maximizes

p ·
{
R(st+1), if st+1 ∈ SFinal
y(~wt, ~x(st+1)), otherwise

end if
V (st+1)← y(~wt, ~x(st+1))
δt ← R(st+1) + γV (st+1)− Vold . TD error-signal
if (q ≥ ε or st+1 ∈ SFinal) then

~wt+1 ← ~wt + αδt~et . Weight-update
end if
for (every weight index i) do . Update elig. traces

∆ei ← ∇wi
y(~wt+1, ~x(st+1))

ei,t+1 ←
{

∆ei, if xi(st+1) 6= 0 ∧REP
γλei,t + ∆ei, otherwise

end for
end for

end function . End of TD(λ) self-play algorithm

the corresponding weight is activated, instead of accumulating
its value. As before, the traces of non-active weights gradually
decay over time and make the weights less sensitive to future
events.
In this work, we will investigate both approaches, conventional
and replacing eligibility traces. An example illustrating both
types of traces is given in Fig. 2.

Resetting traces: The TD(λ) algorithm usually requires a
certain degree of exploration during the learning process, thus,
the execution of random moves from time to time – ignoring
the current policy. When performing random moves, the value
V (st+1) of the resulting state st+1 is most likely not a good
predictor for V (st). The weight update based on V (st) is
normally skipped in this case. This also raises the question how
to handle exploratory actions regarding the eligibility traces.
We will consider two options: 1) Simply resetting all trace
vectors and 2) leaving the traces unchanged although a random
move occured. Both options may diminish the anticipated
effect of eligibility traces significantly, if higher exploration
rates are used (which is not the case in our experiments).



Algorithm 2 General TCL algorithm in pseudo code. Counters
Ai and Ni are initialized once at the beginning of the training.
In the original algorithm, the individual learning rates αi are
calculated with the identity transfer function g(x) = x. We
found in [2] that an exponential scheme with g(x) = eβ(x−1)

produces better results (referred to as TCL-EXP).
1: Initialize counters Ai = 0 and Ni = 0 ∀i.
2: Set global learning rate α.
3: for (every weight index i) do

4: αi ←

{
g
(
|Ni|
Ai

)
, if Ai 6= 0

1, otherwise
5: ri ← δtei,t . recommended weight change
6: wi,t+1 ← wi,t + ααiri . TD update for each weight
7: Ai ← Ai + |ri| . update accumulating counter A
8: Ni ← Ni + ri . update accumulating counter N
9: end for

Implementation: The number of eligibility traces equals
the number of addressable weights (over 9 millions in our
standard n-tuple system) which seems prohibitively high at first
sight. We realized however that in our application Connect-
4 the input vector ~x(st) is very sparse and consequently
the trace vector ~et is sparse as well. It can be shown 7 that
during one game (episode) on average only 1 800 individual
traces are non-zero for our standard n-tuple system (about
3 600 in the case TCL-M). After each episode the trace
vector is reset again. Consequently, the additional resources
needed to implement eligibility traces can be reduced to a
reasonable amount: we implement the trace vector using a
sparse representation (self-balanced binary tree, treemap). This
reduces the memory requirements by a factor of 5 000: Instead
of 9 million addressable traces we realize in each episode only
the active traces which are 1 800 on average.

The incremental TD(λ) algorithm for two-player board
games, including the options for replacing (REP ) and reset-
ting (RES) traces, is listed as pseudo code in Algorithm 1.

D. Temporal Coherence in TD-Learning

In the classical Temporal Difference Learning (TDL) algo-
rithm the choice of an appropriate learning rate is crucial for
the success of the training. Typically, the approximation error
cannot converge to its (local) minimum, if the learning rate is
not selected carefully. Developed by Beal and Smith [19], [33],
Temporal Coherence in TD-Learning (in the following TCL) is
a technique that introduces additional adjustable learning rates
αi for every single weight of the parameter vector ~w.
The main idea is pretty simple: For each weight two counters
Ni and Ai accumulate the sum of weight changes and sum
of absolute weight changes. If all weight changes have the
same sign, then |Ni|/Ai = 1 and the learning rate stays at its
upper bound. If weight changes have alternating signs, then
|Ni|/Ai → 0 for t→∞, and the learning rate will be largely
reduced for this weight. As a weight converges to its optimal

7An upper bound for the number of traces per game is the number of moves
(42) times the number of n-tuples (70) times 2 (mirror states) = 5880. The
actual number is smaller since not every move activates a new state in each
n-tuple. We found that on average around 1 800 individual traces are produced
per game (for the setting TCL [et]), which is a comparatively small number.
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Fig. 3. Asymptotic success rates. For each algorithm we performed 20 runs
with 2 million training games in each run. The asymptotic success is the
average success, measured during the last 500 000 games at 50 equidistant time
points. Algorithms: TDL refers to standard TD-learning w/o TCL. TCL refers
to TCL-EXP. TCL-M is TCL-EXP with a bigger n-tuple system consisting
of 150 (instead of 70) 8-tuples. STD: agent w/o eligibility traces (λ = 0);
[et]: standard implementation of eligibility traces; [res]: resetting the traces
on exploratory moves; [rep]: replacing traces; [rr]: reset & replace. TDL-STD
contains one outlier at 0.79, which is not shown in this graph.

value, the learning rate for this weight will tend towards zero,
which reduces the random fluctuations of that weight.

Algorithm 2 shows the TCL algorithm in pseudo code.
To perform TCL inside TDL, simply insert steps 3–9 of
Algorithm 2 into Algorithm 1 as a replacement for the weight
update step.

III. RESULTS AND ANALYSIS

A. Experimental Setup

The training of all TCL (TDL) agents is performed com-
pletely by self-play. The environment only provides the re-
wards at the end of each game. As n-tuple system we mostly
use the same set of n-tuples (70×8-tuples), all created by ran-
dom walks on the board [1]. Additionally, we will investigate
the effect of eligibility traces on larger n-tuple systems (labeled
as TCL-M). Each agent is initialized with random weights
uniformly drawn from [−χ/2, χ/2] with χ = 0.001 and then
plays a given number (2 millions) of training games against
itself and tries to learn from the experiences made. To explore
the state space of the game, the agent selects its actions with
a small probability ε randomly. We set this exploration rate to
a constant value of ε = 0.1. The global learning rate α decays
exponentially from αinit = 0.004 to αfinal = 0.002, if TDL is
used without TCL, otherwise the parameter is kept constant.
For TCL we use the exponential update scheme TCL-EXP
(Algorithm 2 and [2]), where we set the additional parameter
β to β = 2.7.

Throughout the rest of the paper we use the following
notation for the different eligibility trace variants: [et] for
standard eligibility traces without any further options, [res] for
resetting traces, [rep] for replacing traces, and [rr] for resetting
and replacing traces.



TABLE I. PARAMETER SETTINGS AND TRAINING TIMES FOR ALL EXPERIMENTS PRESENTED IN THIS PAPER. Time to learn [80%] IS DEFINED AS IN
FIG. 6. COLUMN [games] SHOWS THE MEDIAN FROM 20 RUNS. COLUMN [minutes] DEPICTS THE CORRESPONDING COMPUTING TIME. TIME IS MEASURED

ON A STANDARD PC (SINGLE CORE OF AN INTEL CORE I7-3770, 3.40GHZ, 8 GB RAM).

time to learn [80%]
Algorithm n-tuple αinit αfinal ε λ RES REP β [games] [minutes]
TDL-STD 70× 8 0.004 0.002 0.1 0.0 – – – 565 000 68.0
TDL [et] 70× 8 0.004 0.002 0.1 0.5 – – – 370 000 48.3
TDL [rr] 70× 8 0.004 0.002 0.1 0.8

√ √
– 305 000 44.1

TCL-STD 70× 8 0.05 0.05 0.1 0.0 – – 2.7 430 000 54.6
TCL [et] 70× 8 0.05 0.05 0.1 0.5 – – 2.7 230 000 37.9
TCL [res] 70× 8 0.05 0.05 0.1 0.6

√
– 2.7 220 000 28.5

TCL [rep] 70× 8 0.05 0.05 0.1 0.6 –
√

2.7 215 000 34.8
TCL [rr] 70× 8 0.05 0.05 0.1 0.8

√ √
2.7 175 000 26.1

TCL-M [et] 150× 8 0.02 0.02 0.1 0.5 – – 2.7 145 000 38.0
TCL-M [rr] 150× 8 0.02 0.02 0.1 0.8

√ √
2.7 115 000 25.5
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Fig. 4. Initial results with the TCL-EXP algorithm: TCL [et]: using the
standard implementation of eligibility traces with λ = 0.5. TCL-STD: no
eligibility traces (λ = 0.0). When using eligibility traces, the time to reach
80% success rate is considerably lower (0.26 vs. 0.5 million training games)
and the asymptotic success rate is slightly better (93% vs. 91%).
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Fig. 5. Comparison of different eligibility trace variants in the early training
phase. The different algorithm variants are described in Fig. 3.

B. Agent Evaluation

Assessing the strength of an agent for Connect-4 is not a
trivial task. The term ’strength’ can be defined in many ways,
for example, as the ratio of correct classifications (win, loss,
draw) for k randomly generated (legal) positions. However, the
problem is, that most positions differ in their relevance: The
accuracy of predictions for certain states (e.g., the initial board)
are typically more important than for others, which makes
a fair evaluation nearly impossible. One common evaluation
method for assessing the strength of an agent is the direct
interaction with other agents, which allows a direct comparison
of the involved agents, but often still fails to provide an
indication of the real strength which could be used as an
objective, common reference point.
In order to get comparable and replicable results, we developed
a perfect playing Minimax agent – based on sophisticated
techniques such as alpha-beta pruning, transposition tables,
and a 12-ply opening-database – as the main benchmark for
our evaluation process in Connect-4, which is as follows:
To estimate the strength of an agent, a tournament of 200
matches against Minimax is performed. Since Minimax would
win every match as starting player (Yellow), we consider only
games where Minimax moves second.
During the evaluation matches, both opponents will usually
act fully deterministically, which would result in exactly the
same sequence of moves for every game. To overcome this
problem, we introduce a certain degree of randomness: In the
opening phase of the game (the initial 12 moves), Minimax
will be forced to randomly select a successor state, if no move
can be found that at least leads to a draw. In order to prevent
direct losses when performing random moves, Minimax only
considers those successors, that delay the expected defeat for
at least 12 additional moves. After leaving the opening phase,
Minimax will always seek for the most distant loss. This
approach increases the level of difficulty for the evaluated
agent, which has to prove that it can play perfectly over a
longer sequence.8 For each win against Minimax an agent
receives a score of 1.0, for a draw 0.5 and for a loss 0.

8We observed, that a game that ends with a defeat of Minimax lasts in
average 34 moves.
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Fig. 6. Number of training games for different algorithms to reach 80%
success rate. The boxplots show the results from 20 runs. For each run we
measure the success rate every 10 000 games and smooth this curve to dampen
fluctuations. Time to learn is the number of games needed until this smoothed
success rate crosses the 80%-line for the last time. The different algorithm
variants are described in Fig. 3. TDL-STD has one outlier at 2 million games,
which is not shown in this graph.
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Fig. 7. Same as Fig. 6 but now time to learn is the number of games needed
until the smoothed success rate crosses the 90%-line for the first time.

The overall score (success rate) is determined by averaging
all 200 results. An ideal agent is therefore expected to reach
a total score of 1.0 against Minimax. We define two criteria
to assess the strength of an agent: (a) The asymptotic success
rate which is calculated as the average success during the last
500 000 training games of a training run with 2 million games
in total and (b) the time-to-learn, in our case, the number of
training games needed to cross the 80% or 90% success rate
for the last or first time, resp.
It is important to note, that Minimax is only used for the
evaluation of the agents, it does not play any role in the actual
training process; the training is completely based on self-play
of the individual agent.

C. Results

The reference point for our experiments is a Connect-4
agent using the exponential TCL update scheme described
in our earlier work [2]. This agent (denoted here as TCL-
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Fig. 8. Dependency on the parameter λ for standard eligibility traces TCL [et].
The curves suggest that values λ ∈ [0.4, 0.7] are optimal.

STD) is able to reach a success rate of 80% after approx.
430 000 training games (Fig. 4). With TCL-STD as starting
point, we performed several experiments, now in combination
with various implementations of eligibility traces. Fig. 4 and
5 show a clear improvement with eligibility traces.

We compared different versions of eligibility traces: stan-
dard traces, reset on random move, replacing traces, or reset
& replace. Overall, these variants performed quite similarly
(Figs. 3–7). There were, however, some interesting differences:

(i) The asymptotic success rates were slightly (TCL-EXP)
or notably (TDL) higher when using standard eligibility
traces as compared to no traces (Fig. 3). This improve-
ment was lost when adding any of the options ”reset” or
”replace”.

(ii) TCL[rr] (reset & replace) is slightly but significantly
faster in reaching the target ”80% success rate” than the
other eligibility trace versions (Fig. 6).

Eligibility traces are beneficial for bigger n-tuple systems
as well. If we double the number of n-tuples and halve the
global learning rate (algorithm TCL-M[et]), the time to learn
drops significantly by another 35% (Fig. 6). At the same time
the percentage of lost games reduces from 7.0% (asymptotic
success rate for TCL[et], Fig. 3) to 5.5% (TCL-M[et]), which
is a reduction by 25%.

Fig. 8 shows that a trace decay parameter λ ∈ [0.4, 0.7]
is optimal for TCL[et]. Smaller or larger values produce
inferior results. It is surprising that the system breaks down
completely for λ ≥ 0.9. Probably this is due to the exploratory
moves which project their ’wrong’ reward too far back to the
earlier states. A run TCL[res](λ=0.9) confirmed this: When no
rewards are projected back after a random move, we obtained
a curve similar to TCL[et](λ=0.8).

IV. DISCUSSION AND CONCLUSION

We have shown in this contribution that TDL with eligibil-
ity traces works well for a large-scale problem with roughly
700 000 active weights and traces.



Our main result is that eligibility trace make the learning
much faster: The number of training games required to learn
a certain target (whether it is the 80% success rate in Fig. 6
or the 90% success rate in Fig. 7) is smaller by a factor of 2
compared with the variant without eligibility traces.

Compared to our first published result on Connect-4 [1], the
time-to-learn has reduced by an even larger factor 13: from the
former 1 565 000 games in [1] to 115 000 games for the fastest
algorithm TCL-M[rr] in this work. This reduction is however
due to a combination of three factors: temporal coherence
learning with exponential scheme (TCL-EXP), a larger n-tuple
system (TCL-M), and, last but not least, eligibility traces.

Why are eligibility traces better? - There are many good
explanations in the standard TD literature, but we want to
emphasize in particular one point: here and in other n-tuple
applications, the activation is usually very sparse: each board
position will only activate 0.02% (≈ 2 · 70/650 000) of all
active weights. Eligibility traces improve learning for such
sparse activations, because more weights can learn in parallel
in response to a given reward from the environment. Or, to
put it in other words: Eligibility traces allow a certain weight
to learn during a greater percentage of all time steps. If the
individual weight updates are correlated, learning can proceed
faster. If they are not correlated, the net change of the weight
will be small. The effect is in a sense similar to TCL. In
contrast to TCL, it is concentrated on a game episode and it
allows a cross talk between states occurring later in a specific
game and weights set to an eligible state earlier in that game.
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