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Abstract

Addressing black-box constrained optimization problems (COPs) in an effi-
cient manner is a challenging task in real-world applications. Although popu-
lation-based optimization heuristics including evolutionary strategies and ge-
netic algorithms appear to be successful in absence of derivative information,
they often require too many function evaluations which may not be affordable
in practice. The surrogate-assisted technique SACOBRA [1, 2] aims to reduce
the required number of function evaluations by building mathematical models
for objective and constraint functions.

But for COPs with equality constraint(s), it is highly unlikely to find a fully fea-
sible solution, because the feasibility ratio ρ of this type of problems is exactly
zero. The feasibility ratio ρ is the probability that a point randomly chosen
from the search space is feasible. In order to overcome this problem, many
equality handling techniques consider a small feasibility margin ε and try to
find the best solution within the given margin. In other words, they transform
an equality constraint h(~x) = 0 into an inequality constraint |h(~x)|− ε ≤ 0.
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The dilemma with most margin-based equality handling techniques is the fact
that they often report ’solutions’ better than the true optimum which are howe-
ver infeasible in the equality constraint(s) with a constraint violation of order ε .

The equality-handling approach in SACOBRA [1] uses a decrementing margin.
Moreover, a refine mechanism moves the solutions within the given margin to-
wards the subspace of the equality constraint(s). The refine mechanism applies
a conjugate-gradient optimizer on the surrogate, so that no extra function eva-
luation is imposed. In this work we show that SACOBRA with refine step finds
solutions very close to the true optimum, needing only relatively few function
evaluations. Furthermore, we show that SACOBRA is able to find a range
of different solutions (a set of Pareto-optimal solutions minimizing both the
objective function and the constraint violation) for a given margin.

1 Introduction

An optimization problem can be defined as the minimization of an objective
function (fitness function) f subject to inequality constraint function(s)
g1, . . . ,gm and equality constraint function(s) h1, . . . ,hr:

Minimize f (~x), ~x ∈ [~a,~b]⊂ Rd (1)

subject to gi(~x)≤ 0, i = 1,2, . . . ,m

h j(~x) = 0, j = 1,2, . . . ,r

where ~a and ~b define the lower and upper bounds of the search space (a hy-
percube). By negating the fitness function f a maximization problem can be
transformed into a minimization problem without loss of generality.

The most common way of tackling equality constraints in a black-box man-
ner is to consider a small artificial feasibility margin of size ε0 as it is done
in several works [7, 11, 12]. Differential evolution optimizers [6, 14] often
use a decremental margin ε which gradually shrinks to ε f . The same me-
chanism is found in swarm optimizers [13]. Other approaches transform an
equality constraint into two inequalities [5] or they consider one side of the the
equality constraint as the artificial feasible area [10]. They do not need any
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feasibility margin, but they cannot solve all types of equality COPs [1, Fig. 2].



Figure 1: The shaded contours depict the objective function f (darker = smaller). The black curve
shows the equality constraint. Feasible solutions are restricted to this line. The black
star shows the global optimum of the objective function which is different from the
optimum of the constrained problem shown as the white star~x∗. The area enclosed by
the dashed curves is the artificially feasible area, given a fixed feasibility margin ε0. The
white square marks the optimal solution~x∗a f in the artificial feasible region. Black dots
mark some infill points.

Other works [3, 4] use analytical information about the equality constraints to
transform the optimization problem into a feasible subspace where the equa-
lity constraints are implicit. But the absence of such analytical information in
black-box optimization does not allow us to solve the problem in a feasible
subspace.

Now we describe in more detail the dilemma of margin-based equality COP
solvers: Once there is a feasibility margin greater than zero, we have the fol-
lowing dilemma: Each COP solver has a whole set of possible solutions to
choose from. Should we prefer a solution with better objective value but larger
violation of the true equality constraint over another one with worse objective
value but smaller violation? There is no clear answer to this, it is a multi-
criteria problem. Nonetheless, most of the numerical constrained optimizers
are designed to search for the solution with the best objective value~x∗a f inside
the artificially feasible region and they avoid approaching the true optimum~x∗

(see Fig. 1). The distance between these two solutions~x∗a f and~x∗ can be pretty
large, both in input space and objective space.4 Of course the dilemma would

4The distances depend on ε f and the steepness of the equality functions h j(~x) and the objective
function f (~x).
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disappear if ε f approaches zero, but many optimizer have problems with too
small margins (they may not find feasible solutions).

Another aspect of the dilemma is this: The G-function suite used in the
CEC2006 competition [8] is a set of COPs which is commonly used as a ben-
chmark for constrained optimizers. Most of the solvers assume a feasibility
margin of size ε f = 10−4 and, as a result, they often report solutions with an
objective better than the optimal value for problems with equality constraints.
The error measure in objective space becomes negative, which is not very lo-
gical. Other optimizers (among them SACOBRA) tend to stick closer to the
true optimum, of course with a slightly worse objective value. This makes it
difficult to compare solvers for equality COPs. A possible way out is to show
and compare a set of solutions in the multi-objective space {objective function,
constraint violation}.

SACOBRA also uses a decrementing margin strategy. But additionally, each
solution will be pushed in the direction of the true feasible subspace by means
of a refine mechanism.

This work aims to show the benefits of using the refine step in approaching
the true optimum. Moreover, we want to emphasize the importance of repor-
ting a set of solutions (Pareto set) instead of one final solution. This should
become a good practice for benchmarking optimizers on equality-constrained
problems.

This paper is organized as follows: Sec. 2 briefly describes the equality-
handling procedure in SACOBRA. After explaining in Sec. 3 the experimen-
tal setup, we show in Sec. 4 the impact of the refine step on solving several
G-problems by representing a set of solutions in the neighborhood of the opti-
mum. Sec. 5 summarizes the paper.

2 Methods

SACOBRA is a surrogate-assisted constrained optimizer which takes advan-
tage of radial basis function interpolation techniques to reduce the expensive
evaluations of objective and constraint functions [2].
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Figure 2: Main steps of SACOBRA with the equality handling mechanism.

SACOBRA tends to approach the optimal solution iteratively. After genera-
ting a population of initial points, SACOBRA builds surrogate models for the
objective and constraint functions. Based on solving a so-called internal COP
on the surrogate models, SACOBRA suggests the next infill point (the opti-
mum returned from the internal COP). The new infill point will be evaluated
on the real functions and added to the population of points, so the models can
be updated. The algorithm goes through this loop until the budget is exhausted,
as depicted in Fig. 2. Handling equalities in SACOBRA has two main ingre-
dients: I. a decreasing feasibility margin, II. a refine step which aims to move
the solutions towards the subspace of equality constraint(s).

2.1 Decrementing Margin

The zero-volume feasible space attributed to the j-th equality constraint h j(~x)=
0 is expanded to a tube-shaped region around it: |h j(~x)| − ε(n) ≤ 0 by the
proposed algorithm. By gradually reducing the margin ε(n) the solutions are
smoothly guided towards the real feasible subspace. The equality margin ε can
be reduced in different fashions described in [1]. We use a simple exponen-
tial decay scheme. In each iteration n the feasibility margin will be reduced as
follows:

ε
(n+1) = max(ε f , ε

(n)
β ), (2)

where the lower bound ε f is often set to a small value close to machine accu-
racy.
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2.2 Refine Mechanism

The refine step is done by minimizing the squared sum of all equality con-
straint violations by means of a conjugate-gradient (CG) method. This mini-
mization step as described in Eq. (3) is done based on the surrogates of the
equality constraints and not the real equality functions; therefore, no extra real
function evaluation are imposed by this step.

Minimize ∑
r
j=1 (s

(n)
j (~x))2, ~x ∈ [~a,~b]⊂ Rd , (3)

where s(n)j (~x) is the surrogate of the j-th equality. Although in black-box COPs
we do not know the analytical form of the equalities, the refine step tries to
move the best found solution in each iteration towards the feasible subspace
with assistance of the estimated models of the equality functions h(~x). Further-
more, the refine step can be helpful in not losing a good feasible solution when
decreasing the margin after an iteration. More algorithmic details can be found
in [1].

3 Experimental Setup

We use 4 · d points generated by LHS to initialize SACOBRA, where d is the
size of the variable space. According to [1] we know that SACOBRA is not
very sensitive to the choice of the decaying factor β , but it performs best in
β ∈ [0.90,0.94], therefore we use β = 0.92. The internal COPs are addressed
by Cobyla() from the NLOPTR package in R [9]. The refine step is done with
assistance of the optim() function from the STATS package, the method is set
to L-BFGS-B and the maximum number of refine iterations is set to 104. A
maximum of 400 function evaluations is permitted. SACOBRA sets the final
feasibility margin to ε f = 10−8. We compare two different configurations of
SACOBRA with and without the refine step and also a differential evolution
(DE) strategy with automatic parameter adjustment as proposed by Brest [6].
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Table 1: Characteristics of G-problems with equality constraints: d: dimension, LI: the number of
linear inequalities, NI: number of nonlinear inequalities, LE: the number of linear
equalities, NE: the number of nonlinear equalities, α: number of active constraints.

Fct. d type LI NI LE NE α

G03 20 nonlinear 0 0 0 1 1
G05 4 nonlinear 2 0 0 3 3
G11 2 nonlinear 0 0 0 1 1
G13 5 quadratic 0 0 0 3 3

found in [14] but with a more aggressive updating scheme. The final feasibility
margin is set to ε f ∈ {10−4,10−8} in different DE runs.

The characteristics of the G-problems used in this study is listed in Tab. 1.
We select here those problems from the G-function suite that have equality
constraints.

4 Results and Discussion

The result in Fig. 3 shows that SACOBRA with only 400 fe (function evalua-
tions) is able to populate the Pareto front nicely (we take the points with and
without refine together, which are both available within the same run). On the
other hand, DE needs more function evaluations (3300 fe, upper plot) to come
into the vicinity of the Pareto front, however, many DE points have a constraint
violation larger than 10−4. Only if we add more fe to DE (7800 fe, lower plot),
then the DE points will more or less densely populate the region near the Pareto
front.

Although the refine step is a very simple step, it is essential for our algorithm.
As shown in Fig. 3, SACOBRA with refine is doing a better job in reducing the
constraint violation in comparison with the SACOBRA without the refine step.
On the one hand, the refine step helps us to move the best solution found in each
margin towards the real feasible subspace in each iteration. Although a wrong
approximation of the equality constraints in the early iterations can cause a
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For DE results, we run our experiments using the DEOPTIMR package. The
function JDEoptim() in DEOPTIMR applies the same adaptive equality margin



Figure 3: G05 problem: Infill points generated by different algorithms (DE, SACOBRA w/o
refine, SACOBRA) during the optimization process. The final equality margin for all
three algorithms is set to ε f = 10−8.
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Figure 4: Same as Fig. 3, but for DE the feasibility margin is set to the value suggested by
CEC2006 [8] ε f = 10−4.

can guide the solutions towards the correct direction. On the other hand, since
only one new point will be added to the population in each iteration, usually
this point will sit at the border of the artificial feasible region after the optimi-
zation step. If we now shrink the artificial feasible region without refining, we
would lose this point and jump to another feasible point, if any, probably with
a much larger objective value.

Comparing a set of found solutions instead of only the final one, helps us to
have a better comparison for the performance of the equality constrained al-
gorithms. Additionally, providing a set of solutions for COPs with equality
constraints can be beneficial in practice, because the user then can decide to
take a solution which fits best to his/her application.

Figs. 5–7 show similar results for the other G-problems. Tab. 2 shows the
results from all runs in tabular form.
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shift towards more violated regions, the model(s) of equality constraint(s) gra-
dually improve by learning about these regions and eventually the refine step



Figure 5: Same as Fig. 3, but for G03 problem.

Fig. 4 compares SACOBRA and DE when the final feasibility margin is set to
ε f = 10−4 for DE. As expected DE even after thousands of function evaluati-
ons, converges to the optimum of the artificial feasible area~xa f .

5 Conclusion

In this work we have shown that SACOBRA is capable of approaching the true
solution of equality-constrained optimization problems in less function evalu-
ations than other optimizers. SACOBRA finds significantly better solutions in
terms of constraint violation, vicinity to the optimum and efficiency, compared
to DE, a well-known algorithm from evolutionary strategies. It avoids – at least
to a large extent – the often seen dilemma of equality-constraint optimization
that a margin leads to solutions ’better than the optimum’ by violating some
of the equality constraints. We have seen that the refine step – which may be
also a useful building block for other optimization schemes – is essential for
achieving this goal.
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Figure 6: Same as Fig. 3, but for G11 problem.

Figure 7: Same as Fig. 3, but for problem G13. As shown in Tab. 2 DE cannot find good solutions
with even more function evaluations.
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Table 2: Results for the different G-problems: true objective value, median and standard deviation
of objective values from 30 runs of the solvers, mean and median (over 30 runs) of the
maximum equality constraint violation, averaged number of function evaluations (fe).
Note that DE was run here for only 200 ·d iterations on each problem, which leads to bad
objective values in the case of G03 and G13. If more iterations were used for DE, it
would find near optimal solutions for G03 but not for G13.

problem trueObj medObj sd.obj meanViol medViol fe
SACOBRA

G03 -1.0000 -1.0000 5e-07 5e-08 3e-08 200
G05 5126.4981 5126.4981 6e-04 1e-07 7e-08 400
G11 0.7500 0.7500 2e-05 5e-06 7e-07 100
G13 0.0539 0.0540 2e-01 1e-08 7e-09 400

DE (ε f = 10−4, 200 ·d iterations)
G03 -1.0000 -0.8728 4e-02 6e-05 7e-05 13124
G05 5126.4981 5126.4967 2e-06 1e-04 1e-04 7391
G11 0.7500 0.7499 6e-08 1e-04 1e-04 1902
G13 0.0539 0.4267 2e-01 4e-02 4e-02 2359

DE (ε f = 10−8, 200 ·d iterations)
G03 -1.0000 -0.8061 5e-02 4e-05 4e-05 12428
G05 5126.4981 5126.4981 4e-05 3e-07 2e-07 6612
G11 0.7500 0.7500 6e-11 1e-08 1e-08 2425
G13 0.0539 0.3670 2e-01 5e-02 5e-02 2274

Showing a set of best solutions minimizing both, maximum constraint viola-
tion and objective function, is helpful to have a fair comparison of different
algorithms and also it is more practical for real-world applications because the
user has a chance to select the solution which suits the application best.
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