General Board Game Playing for Education and Research in General AI Game Learning

Wolfgang Konen

TH Köln – University of Applied Sciences

What is GBG?

- Let various agents play on ,all' board games
- Standardized interfaces: game states, agents, ...

D

Games	Ν	det	Agents	Description
icTacToe	2	D	Max-N	,Minimax' for N player
lex (scalable)	2	D	Expectimax-N	for ND games
.048	1	ND	MC	Monte Carlo
Connect-4	2	D	MCTS	Monte Carlo Tree Search
lim (scalable)	2	D	MCTSE	for ND games
Othello	2	D	TD	Temporal Difference

N-Tuple Systems

An n-tuple is a sequence of board cells. Example Connect-4: Each cell can have one out of P=4 states: 0=empty and not reachable, 1=Yellow, 2=Red, 3=empty and reachable

Speed

Technology

TH Köln

Arts Sciences

- GBG allows fast game simulation / game play
- The table shows moves/second for various agents and games on a single core.

Agent	Game	Moves/second during		
		game learning	game play	
TD-n-tuple [0-ply]	2048	66.000	94.000	
TD-n-tuple [2-ply]	2048	66.000	5.000	
MCTSE (1000 iter)	2048	_	120	
TD-n-tuple [0-ply]	Connect-4	7.900	40.400	
TD-n-tuple [2-ply]	Connect-4	7.900	5.100	
MCTS (1000 iter)	Connect-4	_	54	
TD-n-tuple [0-ply]	5x5 Hex	17.600	20.500	
TD-n-tuple [2-ply]	5x5 Hex	17.600	700	
MCTSE (1000 iter)	5x5 Hex		31	

	Rubik's Cube (beta)	
Sim (beta)	Sim (beta)	

TD n-tuple... with n-tuple featuresSarsaSarsa with n-tuple

Table 2: Agents in GBG

Table 1: Games in GBG (N: # player, D: deterministic, ND: nondeterministic)

Why? We have GGP!

GGP with GDL: learns an unknown game at *run time*. This is a tough task and fantastic endeavor in logic reasoning!

But as a consequence there are also some limitations [Swiechowski2015] of GGP:

- Simulations in GDL are slow
- Cannot compare & compete with the best game-specific agents (e.g. Othello → Edax, Hex → Hexy)
- CI agents (TD and deep learning) are difficult to integrate (slow learning and combinatorial explosion)

GBG Advantages

• Easier for education: The complicated agents can be re-

 $T_2 = (d6, d5, e5, e4)$ $\xi_2 = 2 \cdot 4^0 + 1 \cdot 4^1 + 2 \cdot 4^2 + 1 \cdot 4^3 = 102$

Educational Benefits

Benefits for students:

- Agents readily available
- First results within days or weeks
- Code better re-usable

Evaluation (questionnaire, 3 students):

- "Better than starting from scratch?" Strong agree
- "Time to get familiar with GBG?" 2 days (median)
- "Enough documentation?" Strong agree

Their wishlist:

- More GUI-elements for game-related settings
- More "How-To"-cases in documentation

Some Results

- used for new games
- First generic implementation of TD-n-tuple agents:
 Arbitrary games, arbitrary number of players
- GBG allows fast game simulation (10.000 90.000 moves per second) for CI agents
- Comparison with game-specific agents (strong or perfect players, e.g. Othello → Edax) is possible
- Generic inclusion of game symmetries
- Game-specific visualization and inspection → get deeper insights
- Human agent play

Disadvantage of GBG:

• Does not allow new games at *run time*. But new games can be added at *compile time*.

Example Games

Conclusion

GBG benefits

Educational perspective:

- Much easier for students to use complex CI agents
- Standardization of code development
- Attracts students to fascinating area of game learning

Research perspective:

- Fast simulation of CI agents
- TD-n-tuple successful on diverse games: 2048,

- Expectimax-N tree for N-player games: extension of Max-N for nondeterministic games. Shown is an example for N = 2 and depth d = 3.
- 1st level: maximizes the tuple entry of the 1st player,
- 2nd level: expectation value of all child nodes (grey circles), each having a certain probability of occurrence,
- 3rd level: maximizes the tuple entry of the 2nd player.
- Similar extension: MCTS \rightarrow MCTS-Expectimax

Technology Arts Sciences TH Köln

Connect-4, Hex, Othello, Nim

- Success against strong or perfect-playing agents (Connect-4, Hex7x7, Nim) \rightarrow advantage over GGP
 - Not yet: Othello, Hex above 7x7

