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Abstract. A new algorithm, based on the Discrete Wavelet Transform
(DWT), for unsupervised anomaly detection in time series is introduced
in this paper. The approach is based on using maximum likelihood es-
timation (MLE) on the DWT of time series. On a diverse set of 158
time series, the algorithm is compared with three other state-of-the-art
anomaly detectors and it is shown to outperform the other approaches
on the test set. Thanks to the linear time complexity of the DWT, our
new algorithm is also computationally efficient.
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1 Introduction

Anomaly detection in time series is a key technology in many areas. Industries
have more and more devices (predictive maintenance for industry equipment,
sensors in the internet of things, or server technologies in cloud services of the
internet) which are collecting increasingly large streams of data. Research insti-
tutions (e.g. high energy physics or astronomy) are collecting vast amounts of
data. To cope with this data, it is of importance to have automated procedures
which separate the large amount of normal data from the anomalies, i.e. to have
fast and reliable anomaly detection.

An anomaly is however difficult to define. In its most general form it is
the absence of normality, but

”
normality“ depends largely on the context and

cannot be expressed in closed form. A further complication is that anomalies can
appear on quite different time scales: they can be spikes (short-time events) or
broader structures (long-term irregularities). Most anomaly detection algorithms
available today have their strength either in shorter or in longer time scales, but
not in both.

Wavelets are a well-established technique in signal processing which allow
to extract features in a self-similar fashion over a broad range of time scales
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(frequencies). This makes them ideally suited to detect anomalies on different
time scales where the time scale is a priori unknown.3

We present in this paper a new method for detecting anomalies based on
wavelet processing and maximum likelihood estimation (MLE). Section 2 ex-
plains our method, Sec. 3 describes the experimental setup. Sec. 4 shows results
and discusses them. Sec. 5 concludes.

1.1 Related Work

Despite the fact that wavelets are used for decades in signal processing and fea-
ture extraction, e. g. for classification of whole time series (machinery data) [12,13],
there is only very little work with wavelets being used for anomaly detection,
i. e. finding precise time intervals in time series containing anomalies: Kwon et
al. [5] use wavelet transforms for the detection of network anomalies in the case
of a possible attack by a malicious user. Kanarchos et al. [4] use wavelets in
conjunction with neural networks and Hilbert transforms. Their algorithm was
only tested on two time series which consisted of synthetic normal data and a
synthetic anomaly.

In this work we test our algorithm on two large anomaly benchmarks, one
being the well known Numenta Anomaly Benchmark (NAB, 58 time series, most
of them real-world) [7] and the other being a subset of the Yahoo’s S5 Webscope
benchmark [6] (A3, 100 synthetic time series). We compare our algorithm with
other state-of-the-art anomaly detectors: Numenta’s NuPic, based on Hierarchi-
cal Temporal Memory (HTM) [2], our previous algorithm SORAD [10] which is
specialized for short-time anomalies, and Twitter’s ADVec algorithm [11].

2 DWT-MLEAD Algorithm

In this section we introduce our new unsupervised DWT-MLEAD algorithm
which uses Discrete Wavelet Transform and Maximimum Likelihood Estimation
for Anomaly Detection in time series.

2.1 Wavelet Transforms

Wavelet transforms [8] allow to represent a time series signal in terms of waves
(the so called wavelets) with little local support. While (short-time) Fourier
transforms always have a trade-off between accuracy in the frequency domain
and accuracy in the time domain, wavelet transforms are used to retrieve ac-
curate time-localized frequency information. The wavelet transform of a time
series signal is composed with scaling and shifting functions. They take a mother
wavelet and stretch and shrink it (scaling), dilate it along the time axis (shift-
ing), and finally form the scalar product with the time series. Sampling wavelets

3 We note in passing that the visual or auditory system of higher vertebrates con-
tains information-processing structures similar to wavelets [3], thus underpinning
the importance of wavelets for natural computing.
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Fig. 1. Example of a decimating DWT using Haar Wavelets for a time series of the
NAB data. The original time series is depicted on scale 10. On the scales 5–9 the detail
coefficients of the DWT are shown. While we move towards lower scales, the number
of coefficients is halved in each step, with 32 coefficients left on scale 5.

in a discrete manner leads to the so called discrete wavelet transform (DWT),
which is commonly used in practice and has linear computational complexity.
In its current form, DWT-MLEAD performs a decimating DWT using Haar
wavelets on each time series. For this purpose, the R-package wavetresh [9] is
used. Since the package requires the time series to have a length equal to a power
of two, we currently artificially extend – where required – a time series of length
n to a length m = 2dlog2(n)e, by mirror copying the last segment of the original
time series into the extended area. However, we do not consider anomalies which
are detected at instances > n. DWT-MLEAD utilizes both the detail coefficients
dk,` and the approximation coefficients ck,`, computed by the DWT (lines 6–7 in
Algorithm 1), where ` addresses the level and k ∈ 1, . . . ,m the time index. The
lowest level ` = 0 contains only one coefficient. The highest level L = log2(m)
has no approximation coefficients but only detail coefficients dk,L which repre-
sent the original time series. In Fig. 1 the DWT of a time series from NAB is
illustrated.

2.2 Sliding Windows

In order to express temporal relationships, a simple and common approach in
many machine learning tasks involving time series is to employ sliding windows
of a certain size w (e.g. w = 10), which are used to generate fixed-sized input
vectors for a model. By stacking the transposed input vectors, we obtain a matrix
X with w columns which can be used to train a model. In the DWT-MLEAD
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algorithm (Algorithm 1, lines 9–10), a window of size w` is slid over the detail
and approximation coefficients dk,` and ck,` at each DWT level ` ∈ {`′, . . . , L}
in order to generate the matrices D(`) and C(`). Subsequently, for each matrix
a multivariate Gaussian distribution is estimated, as described in the following.

2.3 Gaussian Distributions & Maximum Likelihood Estimation

In order to learn the usual patterns in the time series, DWT-MLEAD estimates
multivariate Gaussian distributions for the data generated by the sliding window
approach. A Gaussian distribution is fully parametrized by a mean vector µ and
a covariance matrix Σ. Assuming that an observed data sample was drawn from
a specified distribution (a Gaussian), the maximum likelihood estimation (MLE)
finds the parameters of this distribution such that these parameters maximize
the likelihood of observing the given sample. The function mle in Algorithm 2
does just this for a given matrix X, where X ∈ Rn×w, with n = m − w + 1
being the number of input vectors generated by sliding the window over the
time series, µ ∈ Rw is a w-dimensional vector, which indicates the center of
the distribution, and Σ ∈ Rw×w describes the covariances between individual
dimensions. In Algorithm 1, line 12, DWT-MLEAD estimates the distribution
parameters for each D(`) and C(`).

Subsequently, for every entry in D(`) and C(`) we compute the log-likelihood
vector p using the previously determined parameters of the Gaussian distribu-
tion. This is done in function logProbDensity of Algorithm 2.

2.4 Quantile Boundaries

In order to separate unusual from usual window patterns in D(`) and C(`), one
has to find a suitable boundary. The first method we use computes an empirical
ε-quantile zε (e.g. the first percentile) for the log-likelihood vector p. Another
approach we use to estimate the threshold zε involves a Monte Carlo method,
which samples from the estimated Gaussian distribution and determines the
(1− ε)-quantile for the Mahalanobis distances of the sample to the center of the
distribution. After computing zε in Algorithm 1, line 14, instances are flagged as
”unusual” in a binary vector a if their log-likelihood pi lies beneath zε (line 15).

2.5 Leaf Counters

For each instance in the original time series the DWT-MLEAD algorithm main-
tains a leaf counter hi. If an instance ck,` or dk,` on a certain level ` of the DWT
is flagged as unusual (has a flag ak = 1) then an event e – marked as a black
node in Fig. 2 – is passed down the DWT tree to all leaf nodes connected with
the e node. Each leaf node has a counter hi (blue rectangles in Fig. 2) which
counts all such events (Algorithm 1, line 16). After all events are processed, all
counters with a count hi < 2 are deleted (line 17).
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Fig. 2. Detecting anomalies with leaf counters. Along the vertical axis are the DWT
levels `, along the horizontal axis are the time indices k. The leftmost event e thus
comes from either an unusual c1,L−2 or d1,L−2. Each event increases the leaf counters
(blue rectangles) connected with the e node. Only counters with count ≥ 2 are shown.

2.6 Detecting the Anomalies

Once all the leaf counters are updated, DWT-MLEAD forms clusters Cj of all
leaf counters hi having a neighbor not more than dmax apart (Algorithm 1,
line 18). Specifically, a cluster Cj is here a set of counters, each counter carrying
its leaf position in the original time series and its event count. For each cluster
Cj a sum sj over all event counts is computed. In Fig. 2 for example, all counters
form one cluster with sum sj = 9. If a sum sj exceeds the predefined threshold
B, then the center of cluster Cj is labeled as anomaly event (line 23). The center
µ(Cj) of cluster Cj is the weighted center of mass of all leaf positions, where the
weights are the event counts.

3 Experimental Setup

3.1 The Benchmarks

The Numenta Anomaly Benchmark (NAB) [7] is a publicly available dataset
that consists of 58 time series with in total 365,558 data points – the shortest
series containing 1,127, the longest containing 22,695 and the average series
containing approx. 6,300 instances. The majority of the time series are real-
world data coming from application areas such as server monitoring, network
utilization, sensor readings from industry and social media statistics [7]; 11 time
series were generated artificially, from which 5 are anomaly-free. In total, over
all 58 time series, 115 anomalies were labelled, most of which were identified
manually. It has to be emphasized that the 58 time series are very diverse. The
second benchmark we will investigate is the A3 data from the Webscope S5
benchmark [6]. It consists of 100 synthetic time series, each of length 1500, with
in total 850 short-term anomalies. In our setup, the ground truth anomaly labels
are not provided to the anomaly detection algorithms, which have to learn to
separate anomalies from normal behavior in an unsupervised fashion.
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Algorithm 1 DWT-MLEAD, an anomaly detection algorithm using the Dis-
crete Wavelet Transform.
1: Define: `′ as starting level in DWT for analyzing the time series
2: ε for computation of quantiles (e.g., the 1st percentile)
3: dmax: maximum distance for same-cluster points
4: B: threshold for the counter sum in a cluster that triggers an anomaly
5: function mleAnomaly(y = (y1, y2, . . . , ym)) . m is a power of 2
6: Compute DWT of y for levels ` ∈ {`′, . . . , L}, with L = log2(m)
7: Get detail coefficients dk,` and approximation coefficients ck,` of DWT
8: Initialize a leaf counter hi = 0 for each yi, counting the events it receives
9: Set window sizes for each level: w` = max{2, `− `′ + 1}

10: ∀` ∈ {`′, . . . , L}: Build D(`), C(`) by sliding window of size w` over dk,`, ck,`
11: for all X ∈ {D(`),C(`) | ` = `′, . . . , L− 1} ∪D(L) do
12: (µ,Σ) = mle(X) . Defined in Algorithm 2
13: p = logProbDensity(X,µ,Σ) . Defined in Algorithm 2
14: Compute ε-quantile zε
15: a = predict(p, zε) . Defined in Algorithm 2
16: For all ai = 1: Trigger an event moving down the tree to any connected leaf

17: When all events are processed: Delete all event counters with count hi < 2
18: Form clusters Cj of leaf counters having a neighbor not more than dmax apart
19: S = {} . Set of detected anomalies
20: for all Cj do
21: sj = sum of counter values in Cj
22: if sj > B then
23: S = S ∪ {µ(Cj)} . Add center µ(Cj) of Cj to anomaly set

24: return S

Algorithm 2 Helper functions for Algorithm 1.

1: function mle(X)
2: µ = 1

n

∑n
i=1 xi . Vetor xi ∈ Rw is the ith row of matrix X ∈ Rn×w

3: Σ = 1
n−1

∑n
i=1 (xi − µ)(xi − µ)T

4: return (µ,Σ)

5:
6: function logProbDensity(X,µ,Σ)
7: p ∈ Rn . n is the number of rows in X
8: for each row xi of X do
9: pi = − 1

2
log det(2πΣ)− 1

2
(xi − µ)TΣ−1(xi − µ)

10: return p

11:
12: function predict(p, zε)
13: a: vector of same size as p
14: for all ai do

15: ai =

{
1, if pi < zε

0, otherwise
. Binary anomaly flag vector

16: return a
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3.2 Algorithms and their Settings

In the following, we compare DWT-MLEAD with three online anomaly detection
algorithms, namely SORAD, NuPic, and ADVec. Although we did not system-
atically tune the parameters of each algorithm, we empirically determined for
each algorithm and each dataset the best parameters from an informal search.

DWT-MLEAD Overall, three main parameters in Algorithm 1 have to be set,
which are fixed for the whole dataset: a threshold ε ∈ [0, 1] for the ε-quantiles,
which is varied to adjust the tradeoff between precision and recall, a parameter
B (threshold for counter sum), and a starting level `′. From Sec. 2.4, we use the
empirical quantiles for the NAB data and the Monte Carlo based quantiles for
the A3 data. We empirically determined the setting B = 3.5, `′ = 5 for the NAB
data and B = 1, `′ = 7 for the A3 data. The window size w` is set by Algorithm 1
in a level-dependent fashion. In its current form the DWT-MLEAD algorithm
operates offline on each time series, the remaining algorithms investigated in this
work are all online.

SORAD In this work we will also report results for a simple online regression
anomaly detection (SORAD) algorithm which we recently developed [10]. The
algorithm has several parameters which are set as follows for the experiments:
We set the forgetting factor of the algorithm to λ = 0.98, the anomaly threshold
ε will be varied over a larger range, and the window-size is set to w = 10 for the
A3 data and to w = 200 for the NAB data.

NuPic Numenta’s NuPic4 [2] requires a large number of parameters which
cannot be set easily. Although NuPic provides a swarming algorithm [1] that
optimizes the parameters, we found that the results for the swarmed parameter
search are not significantly different from those for a standard parameter setting,
which was also used for the reported results in [7]. Hence, we use the standard
parameter setting for all experiments. The only parameter which is adjusted by
us is an anomaly threshold that can be varied in the interval [0,1] and – similar
to ε in SORAD and DWT-MLEAD – trades off precision and recall.

ADVec Twitter’s ADVec Algorithm [11], which is available as open-source R
package AnomalyDetection from Github5 is the last algorithm which we will
review in this work. The algorithm requires three main parameters, which are as
follows: The first parameter α describes the level of statistical significance with
which to accept or reject anomalies. As in the other algorithms, this parame-
ter can be interpreted as an anomaly threshold. During our experiments, this
parameter will be varied over a large range of values. ADVec requires a second pa-
rameter, a period-length, which we fix to the value 40 – which has shown to give

4 https://github.com/numenta/nupic
5 http://github.com/twitter/AnomalyDetection
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the best results on the investigated data – entirely throughout this work. Finally,
we found that the setting of the parameter maxanoms is crucial for the perfor-
mance of ADVec, especially on the NAB dataset. This parameter determines the
maximum number of anomalies that the algorithm will detect as a percentage
of the data. We choose maxanoms = 1% for the A3 data and maxanoms = 0.1%
for the NAB data.

3.3 Algorithmic Performance Measures

Similar to typical classification tasks, for time series anomaly detection prob-
lems an algorithm has to classify each time series sample as either anoma-
lous (unusual) or as normal (usual). Commonly, correctly identified anomalies
and normal instances are considered as true-positives (TP) and true negatives
(TN), respectively. Misclassifications are accordingly referred to as false-positives
(FP) and false-negatives (FN). In these cases normal/usual instances are falsely
flagged as anomalous (FP) or the algorithm fails to detect real anomalies (FN).
Due to the typically large number of TN for anomaly detection tasks, we re-
nounce reporting this score. Based on the three remaining measures additional
metrics can be derived, which are useful for comparing the performance of algo-
rithms and will be used in later sections.

precision =
TP

TP + FP
, recall =

TP

TP + FN
(1)

Ideally, one attempts to maximize precision and recall (with a max. value of
one). However, since precision and recall are conflicting objectives in practice,
the F1 score – which takes both precision and recall into account – can be used
to assess an algorithm’s performance. The F1 score is defined as:

F1 = 2 · precision · recall

precision + recall
(2)

Since temporal anomalies can span over larger intervals, we use so-called anomaly
windows for the scoring process. For the NAB data the already specified anomaly
windows are used and for Yahoo’s Webscope S5 data we place windows of size
10 around the labeled anomalies. While each detection outside of an anomaly
window will be counted as a FP, multiple detections inside a window are only
counted as one TP. Conversely, no detection within an anomaly window will be
counted as one FN as well.

4 Results & Discussion

Table 1 summarizes the results for the four algorithms on the A3 and NAB data.
On the A3 data with short-term anomalies, DWT-MLEAD and SORAD both
clearly outperform the other algorithms NuPic and ADVec, achieving both, a
high precision and recall. NuPic and ADVec produce a large amount of FP and
at the same time miss most of the true short-term anomalies. For the NAB data
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Table 1. Results for various algorithms on the A3 and NAB dataset. Shown are the
sums of TP, FP, FN over all time series and the metrics precision, recall and F1, cf.
Eqs. (1)–(2), derived from these sums. All algorithms have their threshold chosen such
that F1 is maximized (in brackets: F1 for threshold such that FP ≈ FN).

Dataset Algorithm Threshold TP FP FN Precision Recall F1 Score

A3

DWT-MLEAD 0.015 806 8 44 0.99 0.95 0.97 (0.95)

NuPic 0.4 172 267 678 0.39 0.2 0.27 (0.26)

SORAD 10−4 810 22 40 0.97 0.95 0.96 (0.96)

ADVec 20 190 216 660 0.47 0.22 0.3 (0.26)

NAB

DWT-MLEAD 0.02 69 65 46 0.51 0.6 0.55 (0.55)

NuPic 0.55 76 113 39 0.4 0.66 0.5 (0.47)

SORAD 10−9 57 313 58 0.15 0.5 0.24 (0.21)

ADVec 100 66 164 49 0.29 0.57 0.38 (0.34)

Table 2. Computation times of the algorithms on datasets A3 and NAB. Shown is the
average and standard deviation from 20 runs each. The runs were performed on a PC
with an i7-3520M CPU and 8 GB of RAM.

Computation Time (s)

Dataset DWT-MLEAD SORAD NuPic ADVec

A3 13.6± 0.3 34.6± 0.1 810.9± 1.3 2.6± 0.2

NAB 12.2± 0.2 111.6± 0.2 1636.4± 2.7 5.8± 0.5

we observe rather different results: while DWT-MLEAD still outperforms the
remaining algorithms according to the overall F1 score, SORAD now performs
the worst according to all metrics. In particular, the precision is rather low for
SORAD, due to the large number of FP. NuPic delivers similar results as DWT-
MLEAD, with a slight advantage for DWT-MLEAD.

Two example time series from the NAB data with the detections of the
individual algorithms are shown in Fig. 3. In the first example it can be clearly
seen that SORAD produces many FP at the recurring spikes in the time series.
This is due to the fact that SORAD has no long-term memory so that such
recurring spikes appear to be anomalous. Only DWT-MLEAD and ADVec detect
both anomalies in both examples, although ADVec produces a few more false-
positives.

All algorithms examined in this work have a threshold which can be varied
in a certain range and which trades off FP and FN (as well as precision and
recall) to a certain extent. In Fig. 4 the precision is plotted against the recall
for different thresholds. For the A3 data the recorded points of DWT-MLEAD
and SORAD clearly dominate those of NuPic and ADVec. For the NAB data
the results are more diverse: while SORAD shows the worst performance of all
algorithms, DWT-MLEAD and NuPic show the best performance, with NuPic
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Fig. 3. Example time series taken from the NAB data with the anomalies detected
by the algorithms DWT-MLEAD, NuPic, ADVec, and SORAD. The red vertical bars
in the plot indicate the true anomaly windows. True-positives are indicated by green
colors while False-positives are colored red.

having a slightly higher precision in larger recall ranges (recall > 0.6) and DWT-
MLEAD in the lower recall ranges (recall < 0.6).

In Table 2, the computation times for the four algorithms on the A3 and NAB
data are shown (mean and standard deviation from 20 runs). Overall, ADVec
shows the best results regarding the computation time. On the A3 (NAB) data
DWT-MLEAD is faster by a factor of 2.5 (9) than SORAD and 60 (134) than
NuPic. However, we assume that an online implementation of DWT-MLEAD
might require some additional computation time.

4.1 Discussion

The wavelet transform allows to capture features of the time series on differ-
ent frequency levels. This is beneficial for detecting both long- and short-term
anomalies. It is thus not unexpected that DWT-MLEAD is the only algorithm in
our comparison which performs equally well on both benchmarks A3 and NAB.
The event pooling mechanism shown in Fig. 2 with a minimum event count of 2
in each leaf counter is effective in shielding against noise which may produce an
unusual event in just one frequency level. As expected, SORAD operates only
well on short-term anomalies, since it analyzes only a short-term window in the
original time series, which is too short for anomalies with a longer range.

The algorithm DWT-MLEAD in its current form has some limitations:

– We did so far only explore Haar wavelets and only modeled a multivariate
Gaussian distribution to the data. It may be that other wavelets or other
distributions would lead to better results.
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Fig. 4. Multiobjective plot for the NAB and A3 dataset. Precision and recall are com-
puted based on the results of all time series of the corresponding data set.

– It is offline, i. e. the anomaly detection is undertaken when the whole time
series is available. (It is still unsupervised since no information about prior
anomalies is given to the algorithm.) There is however no obstacle to turn
it into an semi-online algorithm on longer time series, where the whole algo-
rithm would be repeated after short time intervals (e. g. 100 or 200) on the
last 2m (e. g. 1024 or 2048) time steps of the time series.

– We assume a certain degree of stationarity for the algorithm to work. Trends
and change-points cannot be handled well in the offline form. Again, a semi-
online version could offer more flexibility in the sense that trends and change-
points can be learned by looking at the history of all 2m-windows.

– If a time series has long-term periodic structures, not all anomalies might be
detected correctly. This can happen if the frequency of the long-term periodic
structure is lower than the lowest wavelet level `′ considered in Algorithm 1.
In such cases it might help to extend the algorithm by a periodicity detector
and subtract such a periodicity prior to analysing the time series with DWT-
MLEAD.

5 Conclusion & Future Work

We have shown that the discrete wavelet transform (DWT) is beneficial for de-
tecting anomalies in time series on various time scales. Specifically, our new algo-
rithm DWT-MLEAD shows consistently good results on two larger benchmarks,
one containing short-term anomalies (A3) and the other containing long-term
anomalies (NAB). We tested this algorithm against three other state-of-the-art
anomaly detectors and found DWT in first place on both benchmarks. It is
remarkable that a single algorithmic principle works well over such a diverse
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set of time series. Due to the efficient implementation available for DWT, our
algorithm is computationally efficient (fast) as well.

5.1 Future Work

DWT-MLEAD works better than the other algorithms tested in this study, but
it is not perfect yet, especially not on the NAB benchmark. Future work in this
area should focus on improving the first layout of this algorithm, as outlined in
Sec. 4.1 (Discussion): other wavelets than Haar wavelets, other than multivari-
ate Gaussian distributions, a semi-online version of the algorithm, automated
algorithm parameter tuning, and a periodicity detector.
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