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Abstract

Radial basis function interpolation (RBF) and Kriging based on the
Gaussian processes models (GPs) are great tools for multidimensional
surrogate modeling. They can often deliver accurate models for compli-
cated nonlinear functions. Although RBFs and GPs have very different
origins, they share many fundamentals in practice. Gaussian processes
not only provide a model but also an error estimate associated with the
model which indicates the uncertainty of the model at different points.
The uncertainty property determined by GPs is dependent on the dis-
tribution of the sample points in the input space and as expected the
model error estimate is low where the distribution is dense and large
where the distribution is sparse. Therefore, the uncertainty property can
be determined regardless of the modeling technique.
In this work, we compare RBFs and GPs from the theoretical point of view.
We show how to calculate the model uncertainty for any arbitrary kernel,
e. g. cubic RBF, augmented cubic RBF and other types. Furthermore,
we replace the Kriging model from the DiceKriging R package used in
the SOCU framework [1] with a vectorized RBF model and report some
preliminary results. We show that the new implementation of SOCU
with RBF is faster than the older one. It delivers in many cases equal or
even better optimization accuracy.

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 243



1 Introduction

Real-world optimization problems are often black-box and function eva-
luation can be very expensive.In order to handle such problems, different
surrogate-assisted constrained optimization algorithms have been develo-
ped [1, 10, 8]. A common approach in surrogate-assisted optimization is
the so-called Expected Improvement (EI) method based on Kriging models.
EI was originally developed for unconstrained optimization, but approa-
ches for constrained optimization have been proposed as well [1, 10], one
of them being the SOCU algorithm [1].
Kriging has the big advantage of providing uncertainty information in
surrogates, which is a necessary prerequisite for EI. But Kriging – at least
in most currently available implementations – has also some disadvantages:
We experienced in SOCU often crashes of the Kriging package if we did
not introduce some form of regularization by setting a nonzero value to
the noise variance parameter. This, however, leads in turn to less accurate
models. Secondly, Kriging model calculations are often time-consuming,
if either the dimensionality, the number of design points or the number
of constraints becomes higher.
RBF surrogate models, which we used in other optimizers [4, 8], can be
computed fast, in vectorized form, and robustly. They lack however the
uncertainty information. The motivation for this paper is driven by the
following research question: Can we advise - by exploiting the analogies
between RBF and GP - some form of RBF modeling which provides
an uncertainty measure? And if so, can we apply it to an EI-based
optimization scheme like SOCU and in such arrive at a method having
one or several of these desirable properties:

∙ Avoiding crashes without regularization
∙ Providing more accurate models
∙ Better computation time (e. g. through vectorization)
∙ More variety in radial basis kernels (parameter-free, augmented, ...)

The rest of this paper is organized as follows: In Section. 2, we des-
cribe Gaussian processes, radial basis function interpolation and their
connection with each other. A brief description of the SOCU algorithm
also appears in the same section. Section 3 describes the experimental
setup and the test functions. We report our results and compare different
versions of SOCU in Section 4. Section 5 concludes the paper.
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Table 1: Commonly used kernel functions for GP and radial basis functions for RBF
interpolation. 𝑟 = ||𝑥𝑖 − 𝑥𝑗 ||

Name GP RBF
cubic – 𝜙(𝑟) = 𝑟3

Gaussian 𝜎𝑒− 𝑟2
2𝛼2 𝜙(𝑟, 𝛼) = 𝑒− 𝑟2

2𝛼2

multiquadric – 𝜙(𝑟, 𝛼) =
√︀

1 − ( 𝑟
𝛼 )2

matern(3-2) 𝜎(1 +
√

3𝑟
𝛼 ) exp(−

√
3𝑟
𝛼 ) –

2 Methods

2.1 Gaussian Processes

Gaussian processes (GP) – also known as Kriging – is a probabilistic
modeling technique which applies Bayesian inferences over functions.
Let us assume that an unknown function 𝑓 is evaluated on a finite
set of 𝑛 arbitrary points 𝑋 = {x1, x2, · · · , x𝑛} and 𝑓𝑖 = 𝑓(x𝑖) = 𝑦𝑖.
The Gaussian processes method assumes that 𝑝(𝑓(x1), 𝑓(x2), · · · , 𝑓(x𝑛))
belongs to a multivariate (jointly) Gaussian with a mean 𝜇 and covariance
matrix Σ:

⎡
⎢⎢⎢⎣

𝑓1
𝑓2
...

𝑓𝑛

⎤
⎥⎥⎥⎦ ∼ 𝑁

⎛
⎜⎜⎜⎝

⎡
⎢⎢⎢⎣

𝜇1
𝜇2
...

𝜇𝑛

⎤
⎥⎥⎥⎦ ,

⎡
⎢⎢⎢⎣

Σ11 Σ12 · · · Σ1𝑛

Σ21 Σ22 · · · Σ2𝑛

...
... . . . ...

Σ𝑛1 Σ𝑛2 · · · Σ𝑛𝑛

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ∼ 𝑁 (𝜇, Σ) (1)

where Σ𝑖𝑗 = 𝜅(x𝑖, x𝑗). The covariance matrix contains the dependencies
and similarities of random variables, in this case the 𝑓(𝑥𝑖). Suppose the
unknown function 𝑓 is smooth, then it is very likely that two points
which are located very close to each other in the input space have very
similar values in the output space too. This explains why the 𝜅 is also
known as the similarity function and is often symmetric and a function
of distances. Table 1 shows several commonly used kernel functions.
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Suppose that we want to predict 𝑓* the value of function 𝑓 at a new
point x*. The joint Gaussian distribution including the new point is

⎡
⎢⎢⎢⎢⎢⎣

𝑓1
𝑓2
...

𝑓𝑛

𝑓*

⎤
⎥⎥⎥⎥⎥⎦

∼ 𝑁

⎛
⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎣

𝜇1
𝜇2
...

𝜇𝑛

𝜇*

⎤
⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎣

Σ11 Σ12 · · · Σ1𝑛 Σ1*
Σ21 Σ22 · · · Σ2𝑛 Σ1*

...
... . . . ...

...
Σ𝑛1 Σ𝑛2 · · · Σ𝑛𝑛 Σ𝑛*
Σ*1 Σ*2 · · · Σ*𝑛 Σ**

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠

(2)

which can be summarized as follows
[︂

f
𝑓*

]︂
∼ 𝑁

(︂[︂
𝜇
𝜇*

]︂
,

[︂
K 𝐾*

𝐾𝑇
* 𝐾**

]︂)︂
, (3)

where K = Σ is the 𝑛 × 𝑛 matrix of Eq. (1), 𝐾* = 𝜅(X, 𝑥*) is an 𝑛 × 1
vector and 𝐾** = 𝜅(x*, x*) is a scalar and f = {𝑓1, 𝑓2, · · · , 𝑓𝑛} is an 𝑛×1
vector. X = (x1 . . . x𝑛) is the matrix of the data points. We look for the
probability of 𝑓* when the data X, their corresponding values f and the
new point x* are given. Based on the conditional probability theorem [6]
we can determine a distribution at every new point as follows:

𝑝(𝑓*|x*, X, f) = 𝑁(𝐾𝑇
* K−1f , 𝐾** − 𝐾𝑇

* K−1𝐾*) = 𝑁(𝜇*, Σ*), (4)

where 𝜇* and Σ* can be interpreted as the mean and the uncertainty
of the Gaussian processes model, respectively. Fig. 1 shows an example
of Gaussian process with a Gauss kernel function. Fig. 1-left illustrates
several samples from the prior 𝑝(f |X) and Fig. 1-right shows samples
from the posterior function 𝑝(𝑓*|X*, X, f). The dark black curve is the
mean 𝜇* and the shaded area is showing the 90% confidence interval.
We can rewrite the mean as follows:

𝑓* = 𝐾𝑇
* K−1f

𝑓* = 𝐾𝑇
* 𝜃

𝑓* =
𝑛∑︀

𝑖=1
𝜃𝑖𝜅(x𝑖, x*),

(5)

Eq. (5) shows that the mean of the GP model can be determined as a
linear summation of weighted kernel functions.

246 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017



−2

−1

0

1

2

−5.0 −2.5 0.0 2.5 5.0

x

y

●

●

●

●

−1

0

1

2

−4 −2 0 2 4

x

y

Figure 1: Left: prior. Right: posterior.

The uncertainty term in Eq. (4) can be rewritten as:

Σ* = −𝐾𝑇
* 𝐾−1𝐾* + 𝐾** (6)

It is important to mention that the uncertainty of the model estimated
by Eq. (6) is only a function of the distribution of points in the input
space. Fig. 1 illustrates that the model uncertainty goes to zero at the
given points and it becomes larger as the distance from the evaluated
points increases.

2.2 Radial Basis Function Interpolation

Radial basis function (RBF) interpolation developed by Hardy in 1971 for
cartography purposes was meant to be a suitable interpolation technique
to model hills and valleys with a reasonably high local and global accuracy.
RBF interpolation approximates a function by fitting a linear weighted
combination of radial basis functions. A radial basis function is by
definition any function 𝜙(|| · ||) which is dependent on the distance of the
points x from some fixed centers c. It is common that all the evaluated
points x𝑖 are considered as centers.

𝑓(x) =
𝑛∑︁

𝑖=1
𝜃𝑖𝜑(||x − x𝑖||) (7)

In order to compute the weights 𝜃𝑖 we need to address the following linear
system:

[Φ] [𝜃] = [f ], (8)
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where Φ ∈ R𝑛×𝑛: Φ𝑖𝑗 = 𝜙(||x𝑖−x𝑗 ||), 𝑖, 𝑗 = 1, . . . , 𝑛 and f = 𝑓1, 𝑓2, · · · , 𝑓𝑛.
Therefore, the weights will be determined as following:

𝜃 = Φ−1f (9)

Now that we have the weights 𝜃, we can compute 𝑓* at any point x*:

𝑓* =
𝑛∑︁

𝑖=1
𝜃𝑖𝜑(||x* − x𝑖||) = Φ𝑇

* 𝜃 = Φ𝑇
* Φ−1f (10)

where Φ𝑇
* = [𝜙(||x* − x1||), 𝜙(||x* − x2||), · · · , 𝜙(||x* − x𝑛||)].

2.3 Augmented RBF

It is proven that Φ in Eq. 8 is not guaranteed to be positive definite
for all radial basis functions [5]. In order to assure that the Eq. 8 has
a unique solution with all radial basis functions, Micchelli introduced
augmented RBFs [5]. Augmented RBFs are actually RBF functions with
a polynomial tail.

𝑓(x) =
𝑛∑︁

𝑖=1
𝜃𝑖𝜙(||𝑥 − 𝑢(𝑖)||) + 𝑝(𝑥), 𝑥 ∈ R𝑑, (11)

where 𝑝(𝑥) = 𝜇0 + 𝜇1 𝑥 + 𝜇2 𝑥2 · · · + 𝜇𝑘 𝑥𝑘 is a 𝑘-th order polynomial in
𝑑 variables with 𝑘𝑑 + 1 coefficients.
The augmented RBF model requires the solution of the following linear
system of equations:

[︂
Φ P

P𝑇 0(𝑘𝑑+1)×(𝑘𝑑+1)

]︂ [︂
𝜃
𝜇 ′

]︂
=
[︂

f
0(𝑘𝑑+1)

]︂
(12)

Here, P ∈ R𝑛×(𝑘𝑑+1) is a matrix with (1, 𝑥(𝑖), 𝑥2
(𝑖)) in its 𝑖th row,

0(𝑘𝑑+1)×(𝑘𝑑+1) ∈ R(𝑘𝑑+1)×(𝑘𝑑+1) is a zero matrix, 0(𝑘𝑑+1) is a vector
of zeros. In this work we use the augmented cubic radial basis function
with a second order polynomial tail.
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2.4 GP vs. RBF

Although GP and RBF interpolation have two very different origins, the
comparison of Eq. (10) and Eq. (5) shows that the mean of GP is identical
to the RBF result, if the kernel function 𝜅 is identified with the basis
function 𝜙. On the other hand, GPs provide beside the prediction of the
mean also a prediction of the model uncertainty Σ* (Eq. (6)). Although
radial basis functions by definition do not have any sort of uncertainty
measure, we can determine the model uncertainty for any radial basis
function in a similar way as GP does.

Σ𝑟𝑏𝑓 = 𝜙(||x* − x*||) − Φ𝑇
* Φ−1Φ*, (13)

where 𝜙(||x* − x*||) = 𝜙(0) is a scalar value.
Fig. 2 illustrates that RBF and Kriging with the same kernel type and
parameters give almost the same results. The minimal differences in
the first three columns are due to different matrix inversion techniques
which the two implementations use. As it is shown in Fig. 2 the choice
of kernel parameter has a large impact on the quality of the models. In
this example, small values of 𝛼 resulted in a very non-informative spiky
model. The correct choice of parameter(s) is often a problem dependent
challenging task. Kriging [9] tunes the kernel parameter(s) based on the
maximum likelihood estimation (MLE) approach which its computational
complexity is approximately 𝒪( 1

3 𝑛3 + 1
2 𝑑𝑛2).

The kernel parameters for the RBF interpolation are often set manually.
A recent work [2] suggests an online selection algorithm for choosing the
best kernel type and parameters during an optimization process. In this
work we use a parameter free radial basis function.
The plots in the last column of Fig. 2 are generated by the default
configuration of RBF and Kriging. RBF’s default configuration uses
an augmented cubic kernel function with no need for parameter tuning.
Kriging uses a Gauss kernel and the kernel parameters are assigned by
MLE. We can see that the augmented cubic RBF model produces smaller
errors than the default Kriging model (with MLE). Furthermore, we can
observe that the Kriging model with MLE is not as good as Kriging
with fixed parameters 𝜎 = 1, 𝛼 = 10 for the example shown in Fig. 2.
Rasmussen and Williams [7] show that MLE cannot guarantee optimal
estimation of kernel parameters, since the likelihood function can have
multiple local optima. MLE can suffer from getting stuck in such a local
optimum.
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Figure 2: Comparing RBF and GP from the DiceKriging package in R. The
examples in the first row are all generated by RBF and in the second row
with GP. The plots in the last column are generated by the default
configuration of RBF and GP. The dashed curve 𝑓 = 𝑥3 is the target curve
to be modeled. The circles are the evaluated points. The solid thick curve
is the delivered model. The solid thin curve is the model’s absolute error.
The gray areas indicate the 90% model uncertainty. For the same kernel
function and same parameters, RBF and GP produce almost the same
results. The minimal differences are due to different matrix inversion
techniques used by the two implementations.
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Figure 3: Main steps of the SOCU algorithm.

2.5 SOCU: Surrogate-Assisted Optimization encompassing
Constraints and Uncertainties

The SOCU algorithm developed in [1] is a surrogate assisted constrained
optimization method which makes use of Gaussian processes to model
objective function and feasibility probability.

SOCU is a sequential EGO-based [3] optimization algorithm with four
main steps as illustrated in Fig. 3. After generating an initial population
of solutions, the objective and constraint function(s) are modeled. The
next step is to generate a new infill point which maximizes the modified
expected improvement:

EImod(x) = EI(x) · F (x) = EI(x) ·
m∏

i=1
min

(
2P (gi(x) < 0), 1

)
, (14)

where EI(x) is the expected improvement of the objective function and
P (gi(x) < 0) is the probability of the i-th constraint not being violated.
The single new infill point is evaluated on the real functions and added
to the population. The last three steps will be repeated as long as the
budget is exhausted. More details about the computation of EImod(x)
can be found in [1].

3 Experimental Setup

In this work we compare two versions of the SOCU optimization frame-
work, namely SOCU-Kriging and SOCU-RBF. SOCU-Kriging uses the
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Kriging model from R packages DiceKriging and DiceOptim, while
SOCU-RBF uses our own implementation of RBF interpolation. The first



Table 2: Characteristics of the G-functions: 𝑑: dimension, 𝜌*: feasibility rate (%),
LI/NI: number of linear / nonlinear inequalities, 𝑎: number of constraints
active at the optimum. We selected here only those G-functions without
equality constraints.

Fct. 𝑑 𝜌* LI / NI 𝑎
G01 13 0.0003% 9 / 0 6
G04 5 26.9217% 0 / 6 2
G06 2 0.0072% 0 / 2 2
G07 10 0.0000% 3 / 5 6
G08 2 0.8751% 0 / 2 0
G09 7 0.5207% 0 / 4 2
G10 8 0.0008% 3 / 3 6
G12 3 0.04819% 0 / 1 0
G24 2 0.44250% 0 / 2 2

major difference between the two versions of SOCU is the choice of kernel
functions. SOCU-Kriging uses matern3-2 which is a relatively stable
kernel function according to our initial experiments. SOCU-RBF makes
use of cubic basis function which is a parameter-free kernel function.
DiceKriging uses a maximum likelihood estimation (MLE) algorithm to
tune the two parameters of the matern3-2 kernel. The second difference
is the numerical technique used in both versions for the required matrix
inversion. The DiceKriging package [9] uses Cholesky decomposition
but we found singular value decomposition used for RBF to be a more
stable approach. In our experiments described in [1] we experienced
frequent crashes of Kriging models. It was possible to cure this problem
by using a non-zero regularization factor that can be assigned as the noise
variance parameter. In this work we represent SOCU-Kriging results
with two regularization factors of 𝛿 =

{︀
10−3, 10−4}︀. The third major

difference is an implementation detail which is the underlying reason
for SOCU-RBF being much more time-efficient than SOCU-Kriging.
The DiceKriging package does not support modeling several functions
simultaneously which means that for a problem with 𝑚 constraints, we
have to run through a loop 𝑚 + 1 times in each iteration, while SOCU-
Kriging uses vectorization and performs training and prediction of all

252 Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017
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Table 3: Differences between SOCU-Kriging and SOCU-RBF

SOCU-Kriging SOCU-RBF
kernel matern3-2 cubic
parameter assignment MLE parameter free
matrix inversion cholesky decomposition svd
noise variance 0.001 0.0
vectorization no yes

We apply SOCU-Kriging and SOCU-RBF to the subset of G-problems
having only inequality constraints (see Table 2). G02 is a scalable problem
in its dimension 𝑑. We use here 𝑑 = 2. For each algorithm we run 10
independent trials with different 𝑛 = 3𝑑 initial points. In order to
optimize 𝐸𝐼𝑚𝑜𝑑 we use Generalized Simulated Annealing (R package
GenSA).

4 Results and Discussion

4.1 Performance on G-problems

Fig. 4 shows the optimization results over iterations for SOCU-Kriging
and SOCU-RBF. For most of the problems, SOCU-RBF performs better
than or comparable to SOCU-Kriging except for G12 and G24. G12 and
G24 are the only problems where SOCU-RBF has a larger median error.
However, several optimization runs for G12 conducted by SOCU-RBF
perform better than the best runs of SOCU-Kriging.

4.2 Computational Time

Fig. 5 clearly shows that SOCU-Kriging is computationally more expen-
sive than SOCU-RBF for all G-problems. SOCU-Kriging’s computational
time varies strongly in a range of (0.5-2.5) minutes per iteration for diffe-
rent G-problems, while SOCU-RBF’s computational time per iteration is
under 0.75 minutes regardless of the problem. The difference between
computational time of SOCU-Kriging and SOCU-RBF is dependent on
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Figure 4: Comparing optimization performance of SOCU-Kriging and SOCU-RBF on
G-problems. The curves are showing the median error out of 10 trials. The
error bars indicate the best and the worst results out of 10 trials.
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the number of constraint functions. For example, the largest gap between
SOCU-Kriging and SOCU-RBF appears to be for G01 and G07 which
have 9 and 8 constraint functions, respectively. We can observe that
solving G12 with one constraint has almost the same computational cost
for SOCU-Kriging and for SOCU-RBF.
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Figure 5: Average computational time required by SOCU-Kriging and SOCU-RBF to
run one iteration of each G-problem.

4.3 Noise Variance

We have already shown that SOCU-RBF outperforms SOCU-Kriging in
Fig. 4. The SOCU-Kriging algorithm used for generating Fig. 4 has a
non-zero noise variance 𝛿 = 10−3. One possible reason behind the weaker
performance of SOCU-Kriging in comparison to SOCU-RBF can be that
SOCU-Kriging generates less accurate models due to the non-zero noise
variance value. In order to investigate the impact of noise variance we
applied the SOCU-Kriging framework to all G-problems in Table. 2 with
two different noise variance values 𝛿1 = 10−3 and 𝛿2 = 10−4. SOCU-
Kriging with the smaller noise variance 𝛿2 = 10−4 crashed on the G06
problem. Fig. 6 compares the SOCU-Kriging optimization results with
two different noise variance values for all problems excluding G06.
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Figure 6: Comparing results of SOCU-Kriging with two different noise variance
values 𝛿. The curves are showing the median optimization error of the 10
independent trials for each algorithm. The error bars are indicating the
best and worst case results.
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Fig. 6 indicates that a smaller noise variance value can lead to a slightly
better optimization results. For all the problems illustrated in Fig. 6
except G07, SOCU-Kriging 𝛿 = 10−4) has a smaller median or min. error.
It is not possible to set the noise variance to zero because this would
produce frequent crashes for SOCU-Kriging.

4.4 Model Accuracy

SOCU-Kriging and SOCU-RBF are only distinct in the modeling appro-
ach. Therefore, we hypothesize that the different optimization results
observed in Fig. 4 are due to the different model quality. The performance
of SOCU-Kriging and SOCU-RBF is significantly different especially on
the G01 problem. In order to validate our hypothesis, we show the
approximation error determined during the optimization process with
various SOCU configurations in Fig. 7. As it is shown in Fig. 7, the
approximation error of SOCU-RBF is significantly smaller than both
SOCU-Kriging versions for objective and constraint functions. This shows
that Kriging with matern3-2 kernel and optimized parameters through
MLE cannot compete with our implementation of RBF with the parame-
ter free augmented cubic kernel for G01. A large part of SOCU-RBF’s
better performance can probably be attributed to the augmented part.
This advantage may depend on the type of the function to be modeled.
Comparing different versions of SOCU-Kriging in Fig. 7, we can also
observe that SOCU-Kriging with a smaller noise variance 𝛿 = 10−4 has
slightly smaller approximation error in the last iterations.

5 Conclusion

We explored in this work the similarities and differences between Kriging-
and RBF-based surrogate models. As a new point from this comparison
we could implement an uncertainty measure for RBFs which is needed for
EI-optimization. RBFs allow a greater variety of kernel functions, notably
in the form of augmented RBF variants introduced in Sec. 2.3. This
helps to avoid crashes in the model-building process, which are otherwise
encountered from time to time in Kriging modeling. RBF models have
shown to provide a higher modeling accuracy and higher robustness (they
do not produce crashes in all our experiments).

Proc. 27. Workshop Computational Intelligence, Dortmund, 23.-24.11.2017 257



●
●

●

●

●

●

●
●

●

●

●

●

●

con.1 obj

40 60 80 100 40 60 80 100
−10

−5

0

−8

−4

0

iteration

lo
g 1

0(o
pt

im
iz

at
io

n 
er

ro
r)

● SOCU−Kriging(δ = 1e−03) SOCU−Kriging(δ = 1e−04) SOCU−RBF[non−aug] SOCU−RBF

Appro ximation error f or G01 prob lem

Figure 7: Approximation error for the objective and constraint functions of the G01
problem. G01 has 9 constraints but because of lack of space we just show
the approximation error of the objective (a quadratic function) and one of
its constraint functions (a linear function). Since all 9 constraints are of the
same type, their approximation error curves looks similar. The
approximation error is the error in predicting at the new infill point before
this point is added to the population.

The new RBF surrogate models including uncertainties were tested on
certain optimization benchmarks (a subset of the G-problems). The
overall results were better, both in terms of solution quality and compu-
tational time. Probably a large part of the quality improvement may be
attributed to the ability of augmented RBF models to include a polyno-
mial tail. This may be a large or small advantage, depending on the type
of functions to be modeled.
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