
Proposals for Guest Lectures on Microservice-related Topics

Domain-Specific Architecture / Fachspezifischer Architekturentwurf (Bente/Reitano/Deterling)

Invitation for Guest Lectures on Microservice-related Topics

Prof. Dr. Stefan Bente (stefan.bente@th-koeln.de)

B.Sc. Marco Reitano (marco.reitano@th-koeln.de)

B.Sc. Jann Deterling (jann.deterling@th-koeln.de)

Version 2018-10-06

Summary

For a Master course on Microservice architecture, we invite IT practitioners and experts from the

field to share their insights, knowledge, and experience with our students by delivering guest

lectures. The lectures can be held in German or English.

If you are interested, this document provides you with information about the course, organizational

framework, and a (non-exclusive) list of preferred topics.

Für eine Vorlesung im Informatik Master über Microservice-Architekturen möchten wir IT-Praktiker

und Experten einladen, Ideen, Wissen und Erfahrungen in Form eines Gastvortrags mit unseren

Studierenden zu teilen. Die Vorträge können auf Deutsch oder Englisch gehalten werden.

Für diejenigen, die interessiert sind, einen solchen Vortrag zu halten, beschreibt dieses Dokument die

Veranstaltung, die organisatorischen Randbedingungen und enthält eine (nicht ausschließlich

gemeinte) Liste von Themenvorschlägen.

Guest Lecture as Part of a Computer Science Master Course

„Domain-Specific Architecture“ (in German: „Fachspezifischer Architekturentwurf”, abbreviated

(FAE)) is a mandatory course in the 2nd semester of the Computer Science Master Study at TH Köln.

The course is rated as 6 Credit Points, which translates into 180h of overall workload per student. A

more detailed description of the course can be found here.

In this course, the students learn to design the architecture of complex software systems. We

decided to focus the course solely on Microservice-based architectures, because Microservices have

evolved a predominant architecture style for large and loosely coupled systems, implemented with

an Agile approach. In addition, Microservices lean towards the Domain-Driven Design methodology

by Eric Evans, allowing for a domain-centric design of the system.

The course is structured to guide students through the various stages of software system design.

Based on a real-life case study, the students will design a system. In subteams, they will also

implement a very basic partial prototype of the system. The intention is that the students don’t end

up with “just paper”, but also with some (to an extent) working software.

Each step of the design and implementation process includes a lecture on relevant concepts,

methods, patterns, technologies etc. For these lectures, we invite practitioners and experts from the

field to share their experience with the students.

These guest lectures are explicitly not about pure textbook knowledge. Instead, they should focus on

the benefits, challenges, pitfalls,… of technologies and methodologies when applied in real-life

projects (with all their ambiguities, contradictions, and day-to-day difficulties).

mailto:stefan.bente@th-koeln.de
mailto:marco.reitano@th-koeln.de
mailto:jann.deterling@th-koeln.de
https://blogs.gm.fh-koeln.de/bente/lehre/fachspezifischer-architekturentwurf-fae/

Proposals for Guest Lectures on Microservice-related Topics

Domain-Specific Architecture / Fachspezifischer Architekturentwurf (Bente/Reitano/Deterling)

What is the Benefit For You And Your Company?

By giving a guest lecture, you can inspire young IT professionals with your enthusiasm for your field

of expertise. As noted on many occasions, students are eager to listen to experienced professionals

who talk about what it’s like to work with software systems in real life. So, delivering a guest lecture

is usually a positive and inspiring experience for you as a lecturer.

Your company has the chance to present itself to potential future employees. Students highly

appreciate competence and enthusiasm. By allocating the time and money to send an expert to

deliver a guest lecture at a university, your company shows commitment to the values of expertise

and education.

Frequently Asked Questions - Organizational Framework

How many students are in the course?

 The course will consist of approx. 15 students (Computer Science Master, 2nd semester).

Most of them have already gathered work experience as software developers (or in a related

role).

 However, lecturers should not expect the students to be deeply familiar with relevant

technologies and the challenges of professional, commercial software development in real

life.

 Should you have doubts about what knowledge level you can presume, please contact the

supervisors (Bente / Reitano / Deterling).

Does the lecture have to be held in English?

 Guest lectures can be held in German or English.

 This document was written in English in order to accommodate for non-German-speaking

external experts.

 The students are reasonably fluent in business English. However, there is no problem at all to

hold the lecture in German.

How long should a lecture be?

 The lecture should be between 45 and 90 min.

 After the lecture, there will be group work (see the attached course schedule). As a guest

lecturer, you are invited to stay and engage in this group work (e.g. by answering project-

related questions, handing out small exercises, etc.)

 However, there is no obligation to do so – you can also come for the lecture alone.

What are possible timeslots for lectures?

 Unfortunately, our flexibility in terms of time is limited due to the course structure.

 Timeslot for guest lectures should be on a Friday, somewhere between 13:00 – 16:00 (there

is some flexibility here).

 Other timeslots will be difficult to arrange, as most Master students work half-time, in most

cases with packed schedules.

Proposals for Guest Lectures on Microservice-related Topics

Domain-Specific Architecture / Fachspezifischer Architekturentwurf (Bente/Reitano/Deterling)

Where should the lecture take place?

 The course runs on the TH Köln computer science campus in Gummersbach, about 40 km

from Köln / Cologne.

 The building is LC6 (a side building, not the main building). The room is 0501.

 You will find a description how to get there here: http://blogs.gm.fh-

koeln.de/bente/files/2018/06/Anfahrt-Prof.-Dr.-Bente-TH-K%C3%B6ln-Campus-

Gummersbach.pdf

Can I deliver the lecture via web conference / web cast?

 This might be a viable alternative if the location and/or timeslot proves to be a problem.

 In any case, we can technically arrange for a remote delivery of the lecture.

 However, the best way to interact with the students is of course face to face.

What topics should I lecture on?

 You find a list of preferred topics further down in this document.

 However, don’t feel restricted to this list. If you have a topic about which you can share

practical field experience with the students, please contact us to discuss.

 We have a number of “Advanced Topic” wildcard slots, where we can accommodate virtually

any interesting subject – as long as it is not textbook-only, and related to Microservices.

 What if I cannot cover the complete range of aspects planned in the “preferred topics” list?

 This is not really mandatory.

 If there are aspects that we as supervisors think the students should learn about, we will

discuss them with you.

 If you cannot / don’t want to cover these aspects in your lecture, you just do your part, and

we will add ours.

Preferred Topics

This is a list of preferred topics that we have either planned for the course, or have considered worth

covering in an in-depth course on Microservices. If you would like to cover one of these topics, please

contact us.

However, don’t feel restricted to this list. If you have a topic that missing in the list, but on which you

can share practical field experience with the students, please contact us. We have a number of

“Advanced Topic” wildcard slots, where we can accommodate virtually any interesting subject – as

long as it is not textbook-only, and related to Microservices.

The same applies for the “tailoring” of the lectures. If your preferred topic(s) don’t map exactly to

one of the list items (but e.g. to a combination of several topics), please let us also know. In addition,

we are especially interested in practical case studies (green- or brownfield). So, a 360° case study

report (covering many of the below aspects in lesser detail) would also be very interesting for our

students.

Topics that in our opinion should be dealt with in the Master course are tagged “mandatory”. This

doesn’t mean that the other “non-mandatory” topics are any less appreciated. A practitioner’s view

on them will be of great interest to the students.

http://blogs.gm.fh-koeln.de/bente/files/2018/06/Anfahrt-Prof.-Dr.-Bente-TH-K%C3%B6ln-Campus-Gummersbach.pdf
http://blogs.gm.fh-koeln.de/bente/files/2018/06/Anfahrt-Prof.-Dr.-Bente-TH-K%C3%B6ln-Campus-Gummersbach.pdf
http://blogs.gm.fh-koeln.de/bente/files/2018/06/Anfahrt-Prof.-Dr.-Bente-TH-K%C3%B6ln-Campus-Gummersbach.pdf

Proposals for Guest Lectures on Microservice-related Topics

Domain-Specific Architecture / Fachspezifischer Architekturentwurf (Bente/Reitano/Deterling)

1. Basic Concepts

1.1. DDD & Organization Structure (mandatory)

 Introduction to DDD core concepts

 "What is this all about"? Relationship between domain-driven design, agility and

organization structure

 Practical advice for domain and bounded context analysis (good practices, rules of thumb

for size, …)

1.2. Microservice Concepts (mandatory)

 Motivation: Why Microservices? Advantages and disadvantages, comparison with

monolithic architectures and with SOA

 Core Microservice principles (loose coupling, you build it / you run it, freedom of

technology choice, …)

 Approach when modelling services (e.g. aggregate root = service as a design starting

point)

 Ideal size for a Service (developer anarchy vs. self-contained system)

1.3. CAP-Theorem und Eventual Consistency

 Explanation of CAP theorem and its significance for MS architectures

 Principle of Eventual Consistency

 Practical examples from real-live projects

 Assessment of de-facto consequences and compromises in real life, when Eventual

Consistency paradigm is applied – where does it hurt, where is it easy to tolerate

2. APIs

2.1. API Patterns (mandatory)

 Rules for REST APIs

 Maturity model according to Richardson, esp. level 2 vs. level 3

 GraphQL as alternative to REST

 Good practices: what-to-use-when

 API First vs. Code First

2.2. Advanced Aspects of REST API

 Connection between REST and Messaging

 Approach for designing APIs

 n:m relations in REST

 Local vs. global IDs

3. Service Integration

3.1. Complex Functions in a Rich Domain Model (mandatory)

 Distinction Anemic / Rich Domain Model

 Why is it sensible to use REST level 3 with a RDM?

 How to implement complex interactions between services using Level 3

Proposals for Guest Lectures on Microservice-related Topics

Domain-Specific Architecture / Fachspezifischer Architekturentwurf (Bente/Reitano/Deterling)

3.2. Transactions between Microservices (mandatory)

 Transaction patterns (event sourcing, Saga pattern, interaction between REST and

messaging)

 Introduction to messaging and frequently used technologies

3.3. Large transactions and business processes in a Microservice landscape

 Typical challenges in real-life projects wrt. transactions and business processes,

depending on the application domain (eCommerce, insurance, …)

 Conceptual level: orchestration vs. choreography, hybrid concepts

 Do’s and don’ts

3.4. Resilience in large systems

 Real-life challenges – what are typical, frequently occurring problems?

 Patterns for resilient services (circuit breaker, …)

 Tools and technologies

4. UIs in a Microservice Landscape

4.1. UIs in a Microservice Landscape (mandatory)

 Popular MS patterns to connect UIs: API Gateway, Backend for Frontend, Sidecar, …, …

 Do’s and Don’ts when connecting clients

 UI integration concepts (HTML links, monolithic UIs, client / service side composition,

Micro Frontends, ...)

5. Infrastructure Architecture

5.1. Container & Execution Environment (mandatory)

 DevOps principles

 Docker as a concept

 Useful patterns for distributing containers

 Comparison of tried and trusted technologies and tools

 Service Discovery

5.2. Test Automation

 Concepts CI / CD

 Patterns, technologies

 A practical approach to overall test design (how to navigate the thin line between

carelessness and gold-plating)

 Practical do’s and don’ts

5.3. Monitoring

 Practical advice: what should be supervised, and how?

 Log Aggregation

 Tried and trusted tools and technologies

5.4. XYZ as Code

 Overview: what can be done in terms of automation

 Experience from real-life projects: To what extent does automation pay off? What are the

trade-offs?

 Pragmatic approach „how to get started“

Proposals for Guest Lectures on Microservice-related Topics

Domain-Specific Architecture / Fachspezifischer Architekturentwurf (Bente/Reitano/Deterling)

5.5. Load Balancing

 Overview: approaches to load balancing (in general, and in a Microservice landscape)

 How to assess load requirements in practice – real-life project experience appreciated

 Patterns and tools for Load Balancing

5.6. Authentication und authorization

 Practical advice on suitable technologies

 Integration with enterprise-wide systems for user management (LDAP, Active Directory,

…)

6. Microservice Development

6.1. Debugging in distributed environments

 Practical tips for bug analysis in complex distributed applications

 Good practices for tools and IDEs

6.2. Documentation

 MS = just code, no documentation? What and how to document in MS development?

 Principles for light-weight architecture documentation

 Good practices: what tools work best? Advice for team rules on documentation?

7. Real-Life Experience

7.1. Real-life case studies

 360° experience report on real-life projects

 What was easy – what went wrong – where were the pitfalls …

7.2. Brownfield vs. Greenfield

 Real-life experience: How to deal with domain analysis on existing monoliths? Top-down

or bottom-up analysis? What if the existing domain structure is completely messed up –

How to start with a clean slate?

 Politische aspects: What if the organizational structure *has* to be changed? How (and to

what extent) is it advisable and possible to combine Technical Consulting and

Organisational Change Management?

 Approach – „low hanging fruit“ first, …

Date Time Lecture / Presentation Part by … Group Work Part Result(s)
To be presented next course meeting

Fr 12.10.
12:00 -

16:00

Kickoff

- Course structure, time schedule, further organizational details, grading

criteria

- Rules for result documentation (Github)

TH Köln

- Discussion of the domain at hand: what

subdomains do we have?

- Definition of 3-4 subteams, along the

subdomain borders

- Subdomains identified

- Each student mapped to a

subdomain team

Fr 19.10.
13:00 -

17:00

1.1. DDD & Organization Structure

- Introduction to DDD core concepts

- "What is this all about"? Relationship between domain-driven design,

agility and organization structure

- Practical advice for domain and bounded context analysis (good practices,

rules of thumb for size, …)

TH Köln
- Subteams work on their own (sub-)domain

model, using DDD concepts

- Initial sub-domain model "on

paper"

Fr 26.10.
13:00 -

17:00

1.2. Microservice Concepts

- Motivation: Why Microservices? Advantages and disadvantages,

comparison with monolithic architectures and with SOA

- Core Microservice principles (loose coupling, you build it / you run it,

freedom of technology choice, …)

- Approach when modelling services (e.g. aggregate root = service as a

design starting point)

- Ideal size for a Service (developer anarchy vs. self-contained system)

external or

TH Köln
- Teams implement simple CRUD services

- Aggregates defined

- JPA definitions ready

Fr 02.11.
13:00 -

17:00

2.1 API Patterns

- Rules for REST APIs

- Maturity model according to Richardson, esp. level 2 vs. level 3

- GraphQL as alternative to REST

- Good practices: what-to-use-when

- API First vs. Code First

external or

TH Köln

- Teams design and implement CRUD REST API

- Constraint: Spring Boot + Spring Web MVC

must be used (not Sprint Data REST)

- REST API specified & documented

- REST API implementation can be

tested using Postman

Fr 09.11.
13:00 -

16:00

3.1. Rich Domain Model

- Distinction Anemic / Rich Domain Model

- Why is it sensible to use REST level 3 with a RDM?

- How to implement complex interactions between services

TH Köln

- Teams define examples for complex functions

on services, implement them as dummies, and

implement interaktion between services

- Constrain: first use HateOAS package (to feel

the pain), then migrate to Spring Data REST

(which gives you level 3 "for free")

- API based on Spring Data REST

specified & implemented (testable

by Postman)

- complex interaction scenario can

be demonstrated (Postman)

Fr 16.11.
13:00 -

17:00

4.1. UIs in a Microservice Landscape

- Popular MS patterns to connect UIs: API Gateway, Backend for Frontend

- Do’s and Don’ts when connecting clients

- UI integration concepts (HTML links, monolithic UIs, client / service side

composition, Micro Frontends, ...)

external or

TH Köln

- Teams build simple UI, connect them via REST

and integrate them using a chosen integration

paradigm

- Simple UIs in place

- Basic UI integration

- Connected via REST API

Fr 23.11.

Fr 30.11.
13:00 -

17:00

5.1. Container & Execution Environment

- Docker as a concept

- Service Discovery

- DevOps principles

external or

TH Köln
- Teams set up execution environment

- "All on Docker"

- Service Discovery in place

- Basic integration between MS

available (REST calls)

Fr 07.12.
13:00 -

17:00

3.2 Transactions between Microservices

- Transaction patterns (event sourcing, Saga pattern, interaction between

REST and messaging)

- Introduction to messaging and frequently used technologies

external or

TH Köln

- Teams define events (provider) and connect

to message broker

- Teams select events to be consumed and

implement a listener

- events specified for exemplary

services

- some services connected to

message broker (provider &

consumer)

Fr 14.12. tbd Joint Workshop with Social Workers (Prof. Dr. Isabel Zorn) TH Köln

Fr 21.12.
13:00 -

17:00

Advanced Architecture Topic 1

- see list of advanced topics
external

Fr 28.12.

Fr 04.01.

Fr 11.01.
Advanced Architecture Topic 2

- see list of advanced topics
external

Fr 18.01.
Advanced Architecture Topic 3

- see list of advanced topics
external

Fr 25.01.
Advanced Architecture Topic 4

- see list of advanced topics
external

Fr 01.02.
13:00 -

17:00

Wrapup

- Summary

- Retrospective: Conclusions, Lessons Learnt

- Organizational details for final architecture documentation and final

presentation

TH Köln
- Teams prepare their own conclusions, to be

shared with the larger group later
-

Green: Invitations for external guest lectures

Zeitplan für Informatik-Master-Veranstaltung "Fachspezifischer Architekturentwurf (FAE)" WS 18/19

Schedule for Computer Science Master Course "Domain Specific Architectures" WS 18/19

13:00 -

17:00
to be defined

Xmas Break

No Lecture due to Project Week

See workshop concept, agenda, and goals

to be defined

